Week4 monday

Recap so far: In DFA, the only memory available is in the states. Automata can only "remember" finitely far in the past and finitely much information, because they can have only finitely many states. If a computation path of a DFA visits the same state more than once, the machine can't tell the difference between the first time and future times it visits this state. Thus, if a DFA accepts one long string, then it must accept (infinitely) many similar strings.

Definition A positive integer p is a **pumping length** of a language L over Σ means that, for each string $s \in \Sigma^*$, if $|s| \ge p$ and $s \in L$, then there are strings x, y, z such that

$$s = xyz$$

and

$$|y| > 0$$
, for each $i \ge 0$, $xy^i z \in L$, and $|xy| \le p$.

Negation: A positive integer p is **not a pumping length** of a language L over Σ iff

$$\exists s \left(|s| \ge p \land s \in L \land \forall x \forall y \forall z \left((s = xyz \land |y| > 0 \land |xy| \le p) \rightarrow \exists i (i \ge 0 \land xy^i z \notin L) \right) \right)$$

Informally:

Restating **Pumping Lemma**: If L is a regular language, then it has a pumping length.

Contrapositive: If L has no pumping length, then it is nonregular.

The Pumping Lemma *cannot* be used to prove that a language *is* regular. The Pumping Lemma **can** be used to prove that a language *is not* regular. *Extra practice*: Exercise 1.49 in the book.

Proof strategy: To prove that a language L is **not** regular,

- Consider an arbitrary positive integer p
- Prove that p is not a pumping length for L
- Conclude that L does not have any pumping length, and therefore it is not regular.

Example: $\Sigma = \{0, 1\}, L = \{0^n 1^n \mid n \ge 0\}.$

Fix p an arbitrary positive integer. List strings that are in L and have length greater than or equal to p:

Pick s =

Suppose s = xyz with $|xy| \le p$ and |y| > 0.

Then when i =, $xy^i z =$

Example: $\Sigma = \{0, 1\}, L = \{ww^{\mathcal{R}} \mid w \in \{0, 1\}^*\}$. Remember that the reverse of a string w is denoted $w^{\mathcal{R}}$ and means to write w in the opposite order, if $w = w_1 \cdots w_n$ then $w^{\mathcal{R}} = w_n \cdots w_1$. Note: $\varepsilon^{\mathcal{R}} = \varepsilon$.

Fix p an arbitrary positive integer. List strings that are in L and have length greater than or equal to p:

Pick s =

Suppose s = xyz with $|xy| \le p$ and |y| > 0.

Then when i =, $xy^i z =$

Example: $\Sigma = \{0, 1\}, L = \{0^j 1^k \mid j \ge k \ge 0\}.$

Fix p an arbitrary positive integer. List strings that are in L and have length greater than or equal to p:

Pick s =

Suppose s = xyz with $|xy| \le p$ and |y| > 0.

Then when i =, $xy^i z =$

Example: $\Sigma = \{0, 1\}, L = \{0^n 1^m 0^n \mid m, n \ge 0\}.$

Fix p an arbitrary positive integer. List strings that are in L and have length greater than or equal to p:

Pick s =

Suppose s = xyz with $|xy| \le p$ and |y| > 0.

Then when $i = , xy^i z =$

CC BY-NC-SA 2.0 Version August 7, 2024 (3)

Extra practice:

Language	$s \in L$	$s \notin L$	Is the language regular or nonregular?
$\{a^n b^n \mid 0 \le n \le 5\}$			
$\{b^n a^n \mid n \ge 2\}$			
$\{a^m b^n \mid 0 \le m \le n\}$			
$\{a^m b^n \mid m \ge n+3, n \ge 0\}$			
$\{b^ma^n\mid m\geq 1,n\geq 3\}$			
$\{w \in \{a,b\}^* \mid w = w^{\mathcal{R}}\}$			
$\{ww^{\mathcal{R}} \mid w \in \{a, b\}^*\}$			

Week3 friday

Definition and Theorem: For an alphabet Σ , a language L over Σ is called **regular** exactly when L is recognized by some DFA, which happens exactly when L is recognized by some NFA, and happens exactly when L is described by some regular expression

We saw that: The class of regular languages is closed under complementation, union, intersection, set-wise concatenation, and Kleene star.

Prove or Disprove: There is some alphabet Σ for which there is some language recognized by an NFA but not by any DFA.

Prove or Disprove: There is some alphabet Σ for which there is some finite language not described by any regular expression over Σ .

Prove or Disprove: If a language is recognized by an NFA then the complement of this language is not recognized by any DFA.

Fix alphabet Σ . Is every language L over Σ regular?

Set	Cardinality
$\{0,1\}$	
$\{0,1\}^*$	
$\mathcal{P}(\{0,1\})$	
The set of all languages over $\{0, 1\}$	
The set of all regular expressions over $\{0,1\}$	
The set of all regular languages over $\{0,1\}$	

Strategy: Find an **invariant** property that is true of all regular languages. When analyzing a given language, if the invariant is not true about it, then the language is not regular.

CC BY-NC-SA 2.0 Version August 7, 2024 (5)

Pumping Lemma (Sipser Theorem 1.70): If A is a regular language, then there is a number p (a *pumping length*) where, if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz such that

- |y| > 0
- for each $i \ge 0, xy^i z \in A$
- $|xy| \le p$.

Proof illustration

True or False: A pumping length for $A = \{0, 1\}^*$ is p = 5.