
classify-language

Week9 monday

Recall definition: A is mapping reducible to B means there is a computable function f : Σ∗ → Σ∗ such
that for all strings x in Σ∗,

x ∈ A if and only if f(x) ∈ B.

Notation: when A is mapping reducible to B, we write A ≤m B.

Theorem (Sipser 5.23): If A ≤m B and A is undecidable, then B is undecidable.

Last time we proved that ATM ≤m HALTTM where

HALTTM = {⟨M,w⟩ | M is a Turing machine, w is a string, and M halts on w}

and since ATM is undecidable, HALTTM is also undecidable. The function witnessing the mapping reduction
mapped strings inATM to strings inHALTTM and strings not inATM to strings not inHALTTM by changing
encoded Turing machines to ones that had identical computations except looped instead of rejecting.

True or False: ATM ≤m HALTTM

True or False: HALTTM ≤m ATM .

Proof: Need computable function F : Σ∗ → Σ∗ such that x ∈ HALTTM iff F (x) ∈ ATM . Define

F = “ On input x,

1. Type-check whether x = ⟨M,w⟩ for some TM M and string w. If so, move to step 2; if
not, output ⟨ ⟩

2. Construct the following machine M ′
x:

3. Output ⟨M ′
x, w⟩.”

Verifying correctness: (1) Is function well-defined and computable? (2) Does it have the translation property
x ∈ HALTTM iff its image is in ATM?

Input string Output string
⟨M,w⟩ where M halts on w

⟨M,w⟩ where M does not halt on w

x not encoding any pair of TM and string

CC BY-NC-SA 2.0 Version August 7, 2024 (1)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Theorem (Sipser 5.28): If A ≤m B and B is recognizable, then A is recognizable.

Proof:

Corollary: If A ≤m B and A is unrecognizable, then B is unrecognizable.

Strategy:

(i) To prove that a recognizable language R is undecidable, prove that ATM ≤m R.

(ii) To prove that a co-recognizable language U is undecidable, prove that ATM ≤m U , i.e. that ATM ≤m U .

CC BY-NC-SA 2.0 Version August 7, 2024 (2)

https://creativecommons.org/licenses/by-nc-sa/2.0/

ETM = {⟨M⟩ | M is a Turing machine and L(M) = ∅}

Can we find algorithms to recognize

ETM ?

ETM ?

Claim: ATM ≤m ETM . And hence also ATM ≤m ETM

Proof: Need computable function F : Σ∗ → Σ∗ such that x ∈ ATM iff F (x) /∈ ETM . Define

F = “ On input x,

1. Type-check whether x = ⟨M,w⟩ for some TM M and string w. If so, move to step 2; if
not, output ⟨ ⟩

2. Construct the following machine M ′
x:

3. Output ⟨M ′
x⟩.”

Verifying correctness: (1) Is function well-defined and computable? (2) Does it have the translation property
x ∈ ATM iff its image is not in ETM ?

Input string Output string
⟨M,w⟩ where w ∈ L(M)

⟨M,w⟩ where w /∈ L(M)

x not encoding any pair of TM and string

CC BY-NC-SA 2.0 Version August 7, 2024 (3)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week9 wednesday

Recall: A ismapping reducible to B, written A ≤m B, means there is a computable function f : Σ∗ → Σ∗

such that for all strings x in Σ∗,

x ∈ A if and only if f(x) ∈ B.

So far:

• ATM is recognizable, undecidable, and not-co-recognizable.

• ATM is unrecognizable, undecidable, and co-recognizable.

• HALTTM is recognizable, undecidable, and not-co-recognizable.

• HALTTM is unrecognizable, undecidable, and co-recognizable.

• ETM is unrecognizable, undecidable, and co-recognizable.

• ETM is recognizable, undecidable, and not-co-recognizable.

EQTM = {⟨M,M ′⟩ | M and M ′ are both Turing machines and L(M) = L(M ′)}

Can we find algorithms to recognize

EQTM ?

EQTM ?

Goal: Show that EQTM is not recognizable and that EQTM is not recognizable.

Using Corollary to Theorem 5.28: If A ≤m B and A is unrecognizable, then B is unrecognizable, it’s
enough to prove that

HALTTM ≤m EQTM aka HALTTM ≤m EQTM

HALTTM ≤m EQTM aka HALTTM ≤m EQTM

CC BY-NC-SA 2.0 Version August 7, 2024 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Need computable function F1 : Σ
∗ → Σ∗ such that x ∈ HALTTM iff F1(x) /∈ EQTM .

Strategy:

Map strings ⟨M,w⟩ to strings ⟨M ′
x,

q0start qacc

0, 1, → R

⟩ . This image string is not in EQTM when L(M ′
x) ̸= ∅.

We will build M ′
x so that L(M ′

x) = Σ∗ when M halts on w and L(M ′
x) = ∅ when M loops on w.

Thus: when ⟨M,w⟩ ∈ HALTTM it gets mapped to a string not in EQTM and when ⟨M,w⟩ /∈ HALTTM it
gets mapped to a string that is in EQTM .

Define

F1 = “ On input x,

1. Type-check whether x = ⟨M,w⟩ for some TM M and string w. If so, move to step 2; if
not, output ⟨ ⟩

2. Construct the following machine M ′
x:

3. Output ⟨M ′
x,

q0start qacc

0, 1, → R

⟩ ”

Verifying correctness: (1) Is function well-defined and computable? (2) Does it have the translation property
x ∈ HALTTM iff its image is not in EQTM ?

Input string Output string
⟨M,w⟩ where M halts on w

⟨M,w⟩ where M loops on w

x not encoding any pair of TM and string

Conclude: HALTTM ≤m EQTM

CC BY-NC-SA 2.0 Version August 7, 2024 (5)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Need computable function F2 : Σ
∗ → Σ∗ such that x ∈ HALTTM iff F2(x) ∈ EQTM .

Strategy:

Map strings ⟨M,w⟩ to strings ⟨M ′
x,

q0start ⟩ . This image string is in EQTM when L(M ′
x) = Σ∗.

We will build M ′
x so that L(M ′

x) = Σ∗ when M halts on w and L(M ′
x) = ∅ when M loops on w.

Thus: when ⟨M,w⟩ ∈ HALTTM it gets mapped to a string in EQTM and when ⟨M,w⟩ /∈ HALTTM it gets
mapped to a string that is not in EQTM .

Define

F2 = “ On input x,

1. Type-check whether x = ⟨M,w⟩ for some TM M and string w. If so, move to step 2; if
not, output ⟨ ⟩

2. Construct the following machine M ′
x:

3. Output ⟨M ′
x,

q0start ⟩ ”

Verifying correctness: (1) Is function well-defined and computable? (2) Does it have the translation property
x ∈ HALTTM iff its image is in EQTM ?

Input string Output string
⟨M,w⟩ where M halts on w

⟨M,w⟩ where M loops on w

x not encoding any pair of TM and string

Conclude: HALTTM ≤m EQTM

CC BY-NC-SA 2.0 Version August 7, 2024 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week9 friday

Two models of computation are called equally expressive when every language recognizable with the first
model is recognizable with the second, and vice versa.

True / False: NFAs and PDAs are equally expressive.

True / False: Regular expressions and CFGs are equally expressive.

Church-Turing Thesis (Sipser p. 183): The informal notion of algorithm is formalized completely and
correctly by the formal definition of a Turing machine. In other words: all reasonably expressive models of
computation are equally expressive with the standard Turing machine.

Some examples of models that are equally expressive with deterministic Turing
machines:

May-stay machines The May-stay machine model is the same as the usual Turing machine model,
except that on each transition, the tape head may move L, move R, or Stay.

Formally: (Q,Σ,Γ, δ, q0, qaccept, qreject) where

δ : Q× Γ → Q× Γ× {L,R, S}

Claim: Turing machines and May-stay machines are equally expressive. To prove . . .

To translate a standard TM to a may-stay machine: never use the direction S!

To translate one of the may-stay machines to standard TM: any time TM would Stay, move right then left.

Multitape Turing machine A multitape Turing macihne with k tapes can be formally representated

as (Q,Σ,Γ, δ, q0, qacc, qrej) where Q is the finite set of states, Σ is the input alphabet with /∈ Σ, Γ is the
tape alphabet with Σ ⊊ Γ , δ : Q× Γk → Q× Γk × {L,R}k (where k is the number of states)

If M is a standard TM, it is a 1-tape machine.

To translate a k-tape machine to a standard TM: Use a new symbol to separate the contents of each tape
and keep track of location of head with special version of each tape symbol. Sipser Theorem 3.13

CC BY-NC-SA 2.0 Version August 7, 2024 (7)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Enumerators Enumerators give a different model of computation where a language is produced, one
string at a time, rather than recognized by accepting (or not) individual strings.

Each enumerator machine has finite state control, unlimited work tape, and a printer. The computation
proceeds according to transition function; at any point machine may “send” a string to the printer.

E = (Q,Σ,Γ, δ, q0, qprint)

Q is the finite set of states, Σ is the output alphabet, Γ is the tape alphabet (Σ ⊊ Γ, ∈ Γ \ Σ),

δ : Q× Γ× Γ → Q× Γ× Γ× {L,R} × {L,R}

where in state q, when the working tape is scanning character x and the printer tape is scanning character
y, δ((q, x, y)) = (q′, x′, y′, dw, dp) means transition to control state q′, write x′ on the working tape, write y′

on the printer tape, move in direction dw on the working tape, and move in direction dp on the printer tape.
The computation starts in q0 and each time the computation enters qprint the string from the leftmost edge
of the printer tape to the first blank cell is considered to be printed.

The language enumerated by E, L(E), is {w ∈ Σ∗ | E eventually, at finite time, prints w}.

Theorem 3.21 A language is Turing-recognizable iff some enumerator enumerates it.

Proof, part 1: Assume L is enumerated by some enumerator, E, so L = L(E). We’ll use E in a subroutine
within a high-level description of a new Turing machine that we will build to recognize L.

Goal: build Turing machine ME with L(ME) = L(E).

Define ME as follows: ME = “On input w,

1. Run E. For each string x printed by E.

2. Check if x = w. If so, accept (and halt); otherwise, continue.”

Proof, part 2: Assume L is Turing-recognizable and there is a Turing machine M with L = L(M). We’ll
use M in a subroutine within a high-level description of an enumerator that we will build to enumerate L.

Goal: build enumerator EM with L(EM) = L(M).

Idea: check each string in turn to see if it is in L.

How? Run computation of M on each string. But: need to be careful about computations that don’t halt.

Recall String order for Σ = {0, 1}: s1 = ε, s2 = 0, s3 = 1, s4 = 00, s5 = 01, s6 = 10, s7 = 11, s8 = 000, . . .

Define EM as follows: EM = “ ignore any input. Repeat the following for i = 1, 2, 3, . . .

1. Run the computations of M on s1, s2, . . . , si for (at most) i steps each

2. For each of these i computations that accept during the (at most) i steps, print out the accepted
string.”

CC BY-NC-SA 2.0 Version August 7, 2024 (8)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Nondeterministic Turing machine

At any point in the computation, the nondeterministic machine may proceed according to several possibil-
ities: (Q,Σ,Γ, δ, q0, qacc, qrej) where

δ : Q× Γ → P(Q× Γ× {L,R})

The computation of a nondeterministic Turing machine is a tree with branching when the next step of the
computation has multiple possibilities. A nondeterministic Turing machine accepts a string exactly when
some branch of the computation tree enters the accept state.

Given a nondeterministic machine, we can use a 3-tape Turing machine to simulate it by doing a breadth-
first search of computation tree: one tape is “read-only” input tape, one tape simulates the tape of the
nondeterministic computation, and one tape tracks nondeterministic branching. Sipser page 178

Summary

Two models of computation are called equally expressive when every language recognizable with the first
model is recognizable with the second, and vice versa.

To prove the existence of a Turing machine that decides / recognizes some language, it’s enough to construct
an example using any of the equally expressive models.

But: some of the performance properties of these models are not equivalent.

Week8 monday

Acceptance problem
for Turing machines ATM {⟨M,w⟩ | M is a Turing machine that accepts input string w}
Language emptiness testing
for Turing machines ETM {⟨M⟩ | M is a Turing machine and L(M) = ∅}
Language equality testing
for Turing machines EQTM {⟨M1,M2⟩ | M1 and M2 are Turing machines and L(M1) = L(M2)}

M1

M2

M3

Example strings in ATM

Example strings in ETM

Example strings in EQTM

CC BY-NC-SA 2.0 Version August 7, 2024 (9)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Theorem: ATM is Turing-recognizable.

Strategy: To prove this theorem, we need to define a Turing machine RATM such that L(RATM) = ATM .

Define RATM = “

Proof of correctness:

We will show that ATM is undecidable. First, let’s explore what that means.

CC BY-NC-SA 2.0 Version August 7, 2024 (10)

https://creativecommons.org/licenses/by-nc-sa/2.0/

To prove that a computational problem is decidable, we find/ build a Turing machine that recognizes the
language encoding the computational problem, and that is a decider.

How do we prove a specific problem is not decidable?

How would we even find such a computational problem?

Counting arguments for the existence of an undecidable language:

• The set of all Turing machines is countably infinite.

• Each recognizable language has at least one Turing machine that recognizes it (by definition), so there
can be no more Turing-recognizable languages than there are Turing machines.

• Since there are infinitely many Turing-recognizable languages (think of the singleton sets), there are
countably infinitely many Turing-recognizable languages.

• Such the set of Turing-decidable languages is an infinite subset of the set of Turing-recognizable
languages, the set of Turing-decidable languages is also countably infinite.

Since there are uncountably many languages (because P(Σ∗) is uncountable), there are uncountably many
unrecognizable languages and there are uncountably many undecidable languages.

Thus, there’s at least one undecidable language!

What’s a specific example of a language that is unrecognizable or undecidable?

To prove that a language is undecidable, we need to prove that there is no Turing machine that decides it.

Key idea: proof by contradiction relying on self-referential disagreement.

Theorem: ATM is not Turing-decidable.

Proof: Suppose towards a contradiction that there is a Turing machine that decides ATM . We call this
presumed machine MATM .

By assumption, for every Turing machine M and every string w

• If w ∈ L(M), then the computation of MATM on ⟨M,w⟩

• If w /∈ L(M), then the computation of MATM on ⟨M,w⟩

Define a new Turing machine using the high-level description:

D =“ On input ⟨M⟩, where M is a Turing machine:

1. Run MATM on ⟨M, ⟨M⟩⟩.
2. If MATM accepts, reject; if MATM rejects, accept.”

CC BY-NC-SA 2.0 Version August 7, 2024 (11)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Is D a Turing machine?

Is D a decider?

What is the result of the computation of D on ⟨D⟩?

CC BY-NC-SA 2.0 Version August 7, 2024 (12)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Definition: A language L over an alphabet Σ is called co-recognizable if its complement, defined as
Σ∗ \ L = {x ∈ Σ∗ | x /∈ L}, is Turing-recognizable.

Theorem (Sipser Theorem 4.22): A language is Turing-decidable if and only if both it and its complement
are Turing-recognizable.

Proof, first direction: Suppose language L is Turing-decidable. WTS that both it and its complement
are Turing-recognizable.

Proof, second direction: Suppose language L is Turing-recognizable, and so is its complement. WTS
that L is Turing-decidable.

Notation: The complement of a set X is denoted with a superscript c, Xc, or an overline, X.

Week8 wednesday

Mapping reduction

Motivation: Proving that ATM is undecidable was hard. How can we leverage that work? Can we relate
the decidability / undecidability of one problem to another?

If problem X is no harder than problem Y

. . . and if Y is easy,

. . . then X must be easy too.

If problem X is no harder than problem Y

. . . and if X is hard,

. . . then Y must be hard too.

“Problem X is no harder than problem Y ” means “Can answer questions about membership in X by
converting them to questions about membership in Y ”.

Definition: A is mapping reducible to B means there is a computable function f : Σ∗ → Σ∗ such that
for all strings x in Σ∗,

x ∈ A if and only if f(x) ∈ B.

Notation: when A is mapping reducible to B, we write A ≤m B.

Intuition: A ≤m B means A is no harder than B, i.e. that the level of difficulty of A is less than or equal
the level of difficulty of B.

TODO

1. What is a computable function?

2. How do mapping reductions help establish the computational difficulty of languages?

CC BY-NC-SA 2.0 Version August 7, 2024 (13)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Computable functions

Definition: A function f : Σ∗ → Σ∗ is a computable function means there is some Turing machine such
that, for each x, on input x the Turing machine halts with exactly f(x) followed by all blanks on the tape

Examples of computable functions:

The function that maps a string to a string which is one character longer and whose value, when interpreted
as a fixed-width binary representation of a nonnegative integer is twice the value of the input string (when
interpreted as a fixed-width binary representation of a non-negative integer)

f1 : Σ
∗ → Σ∗ f1(x) = x0

To prove f1 is computable function, we define a Turing machine computing it.

High-level description

“On input w

1. Append 0 to w.

2. Halt.”

Implementation-level description

“On input w

1. Sweep read-write head to the right until find first blank cell.

2. Write 0.

3. Halt.”

Formal definition ({q0, qacc, qrej}, {0, 1}, {0, 1, }, δ, q0, qacc, qrej) where δ is specified by the state diagram:

CC BY-NC-SA 2.0 Version August 7, 2024 (14)

https://creativecommons.org/licenses/by-nc-sa/2.0/

The function that maps a string to the result of repeating the string twice.

f2 : Σ
∗ → Σ∗ f2(x) = xx

The function that maps strings that are not the codes of NFAs to the empty string and that maps strings
that code NFAs to the code of a DFA that recognizes the language recognized by the NFA produced by the
macro-state construction from Chapter 1.

The function that maps strings that are not the codes of Turing machines to the empty string and that
maps strings that code Turing machines to the code of the related Turing machine that acts like the Turing
machine coded by the input, except that if this Turing machine coded by the input tries to reject, the new
machine will go into a loop.

f4 : Σ
∗ → Σ∗ f4(x) =

{
ε if x is not the code of a TM

⟨(Q ∪ {qtrap},Σ,Γ, δ′, q0, qacc, qrej)⟩ if x = ⟨(Q,Σ,Γ, δ, q0, qacc, qrej)⟩

where qtrap /∈ Q and

δ′((q, x)) =

{
(r, y, d) if q ∈ Q, x ∈ Γ, δ((q, x)) = (r, y, d), and r ̸= qrej

(qtrap, , R) otherwise

CC BY-NC-SA 2.0 Version August 7, 2024 (15)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Definition: A is mapping reducible to B means there is a computable function f : Σ∗ → Σ∗ such that
for all strings x in Σ∗,

x ∈ A if and only if f(x) ∈ B.

Making intutition precise . . .

Theorem (Sipser 5.22): If A ≤m B and B is decidable, then A is decidable.

Theorem (Sipser 5.23): If A ≤m B and A is undecidable, then B is undecidable.

Week8 friday

Recall definition: A is mapping reducible to B means there is a computable function f : Σ∗ → Σ∗ such
that for all strings x in Σ∗,

x ∈ A if and only if f(x) ∈ B.

Notation: when A is mapping reducible to B, we write A ≤m B.

Intuition: A ≤m B means A is no harder than B, i.e. that the level of difficulty of A is less than or equal
the level of difficulty of B.

Example: ATM ≤m ATM

Example: ADFA ≤m {ww | w ∈ {0, 1}∗}

CC BY-NC-SA 2.0 Version August 7, 2024 (16)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Halting problem

HALTTM = {⟨M,w⟩ | M is a Turing machine, w is a string, and M halts on w}

Define F : Σ∗ → Σ∗ by

F (x) =

{
constout if x ̸= ⟨M,w⟩ for any Turing machine M and string w over the alphabet of M

⟨M ′, w⟩ if x = ⟨M,w⟩ for some Turing machine M and string w over the alphabet of M .

where constout = ⟨ , ε⟩ and M ′ is a Turing machine that computes like M except, if the
computation ever were to go to a reject state, M ′ loops instead.

F (⟨ , ε⟩) =

To use this function to prove that ATM ≤m HALTTM , we need two claims:

Claim (1): F is computable

Claim (2): for every x, x ∈ ATM iff F (x) ∈ HALTTM .

CC BY-NC-SA 2.0 Version August 7, 2024 (17)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week5 monday

These definitions are on pages 101-102.

Term Typical symbol Meaning
or Notation

Context-free grammar (CFG) G G = (V,Σ, R, S)
The set of variables V Finite set of symbols that represent phases in pro-

duction pattern
The set of terminals Σ Alphabet of symbols of strings generated by CFG

V ∩ Σ = ∅
The set of rules R Each rule is A → u with A ∈ V and u ∈ (V ∪ Σ)∗

The start variable S Usually on left-hand-side of first/ topmost rule

Derivation S ⇒ · · · ⇒ w Sequence of substitutions in a CFG (also written
S ⇒∗ w). At each step, we can apply one rule
to one occurrence of a variable in the current string
by substituting that occurrence of the variable with
the right-hand-side of the rule. The derivation must
end when the current string has only terminals (no
variables) because then there are no instances of
variables to apply a rule to.

Language generated by the
context-free grammar G

L(G) The set of strings for which there is a derivation in
G. Symbolically: {w ∈ Σ∗ | S ⇒∗ w} i.e.

{w ∈ Σ∗ | there is derivation in G that ends in w}

Context-free language A language that is the language generated by some
context-free grammar

Examples of context-free grammars, derivations in those grammars, and the languages gen-
erated by those grammars

G1 = ({S}, {0}, R, S) with rules

S → 0S

S → 0

In L(G1) . . .

Not in L(G1) . . .

CC BY-NC-SA 2.0 Version August 7, 2024 (18)

https://creativecommons.org/licenses/by-nc-sa/2.0/

G2 = ({S}, {0, 1}, R, S)
S → 0S | 1S | ε

In L(G2) . . .

Not in L(G2) . . .

({S, T}, {0, 1}, R, S) with rules

S → T1T1T1T

T → 0T | 1T | ε

In L(G3) . . .

Not in L(G3) . . .

CC BY-NC-SA 2.0 Version August 7, 2024 (19)

https://creativecommons.org/licenses/by-nc-sa/2.0/

G4 = ({A,B}, {0, 1}, R,A) with rules

A → 0A0 | 0A1 | 1A0 | 1A1 | 1

In L(G4) . . .

Not in L(G4) . . .

CC BY-NC-SA 2.0 Version August 7, 2024 (20)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Design a CFG to generate the language {anbn | n ≥ 0}

Sample derivation:

CC BY-NC-SA 2.0 Version August 7, 2024 (21)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week5 wednesday

Warmup: Design a CFG to generate the language {aibj | j ≥ i ≥ 0}

Sample derivation:

Design a PDA to recognize the language {aibj | j ≥ i ≥ 0}

CC BY-NC-SA 2.0 Version August 7, 2024 (22)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Theorem 2.20: A language is generated by some context-free grammar if and only if it is recognized by
some push-down automaton.

Definition: a language is called context-free if it is the language generated by a context-free grammar.
The class of all context-free language over a given alphabet Σ is called CFL.

Consequences:

• Quick proof that every regular language is context free

• To prove closure of the class of context-free languages under a given operation, we can choose either
of two modes of proof (via CFGs or PDAs) depending on which is easier

• To fully specify a PDA we could give its 6-tuple formal definition or we could give its input alphabet,
stack alphabet, and state diagram. An informal description of a PDA is a step-by-step description of
how its computations would process input strings; the reader should be able to reconstruct the state
diagram or formal definition precisely from such a descripton. The informal description of a PDA can
refer to some common modules or subroutines that are computable by PDAs:

– PDAs can “test for emptiness of stack” without providing details. How? We can always push
a special end-of-stack symbol, $, at the start, before processing any input, and then use this
symbol as a flag.

– PDAs can “test for end of input” without providing details. How? We can transform a PDA to
one where accepting states are only those reachable when there are no more input symbols.

CC BY-NC-SA 2.0 Version August 7, 2024 (23)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Suppose L1 and L2 are context-free languages over Σ. Goal: L1 ∪ L2 is also context-free.

Approach 1: with PDAs

Let M1 = (Q1,Σ,Γ1, δ1, q1, F1) and M2 = (Q2,Σ,Γ2, δ2, q2, F2) be PDAs with L(M1) = L1 and L(M2) = L2.

Define M =

Approach 2: with CFGs

Let G1 = (V1,Σ, R1, S1) and G2 = (V2,Σ, R2, S2) be CFGs with L(G1) = L1 and L(G2) = L2.

Define G =

CC BY-NC-SA 2.0 Version August 7, 2024 (24)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Suppose L1 and L2 are context-free languages over Σ. Goal: L1 ◦ L2 is also context-free.

Approach 1: with PDAs

Let M1 = (Q1,Σ,Γ1, δ1, q1, F1) and M2 = (Q2,Σ,Γ2, δ2, q2, F2) be PDAs with L(M1) = L1 and L(M2) = L2.

Define M =

Approach 2: with CFGs

Let G1 = (V1,Σ, R1, S1) and G2 = (V2,Σ, R2, S2) be CFGs with L(G1) = L1 and L(G2) = L2.

Define G =

CC BY-NC-SA 2.0 Version August 7, 2024 (25)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Summary

Over a fixed alphabet Σ, a language L is regular

iff it is described by some regular expression
iff it is recognized by some DFA
iff it is recognized by some NFA

Over a fixed alphabet Σ, a language L is context-free

iff it is generated by some CFG
iff it is recognized by some PDA

Fact: Every regular language is a context-free language.

Fact: There are context-free languages that are not nonregular.

Fact: There are countably many regular languages.

Fact: There are countably inifnitely many context-free languages.

Consequence: Most languages are not context-free!

Examples of non-context-free languages

{anbncn | 0 ≤ n, n ∈ Z}
{aibjck | 0 ≤ i ≤ j ≤ k, i ∈ Z, j ∈ Z, k ∈ Z}
{ww | w ∈ {0, 1}∗}

(Sipser Ex 2.36, Ex 2.37, 2.38)

There is a Pumping Lemma for CFL that can be used to prove a specific language is non-context-free: If
A is a context-free language, there there is a number p where, if s is any string in A of length at least p,
then s may be divided into five pieces s = uvxyz where (1) for each i ≥ 0, uvixyiz ∈ A, (2) |uv| > 0, (3)
|vxy| ≤ p. We will not go into the details of the proof or application of Pumping Lemma for CFLs this
quarter.

CC BY-NC-SA 2.0 Version August 7, 2024 (26)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week5 friday

Week4 monday

Recap so far: In DFA, the only memory available is in the states. Automata can only “remember” finitely far
in the past and finitely much information, because they can have only finitely many states. If a computation
path of a DFA visits the same state more than once, the machine can’t tell the difference between the first
time and future times it visits this state. Thus, if a DFA accepts one long string, then it must accept
(infinitely) many similar strings.

Definition A positive integer p is a pumping length of a language L over Σ means that, for each string
s ∈ Σ∗, if |s| ≥ p and s ∈ L, then there are strings x, y, z such that

s = xyz

and
|y| > 0, for each i ≥ 0, xyiz ∈ L, and |xy| ≤ p.

Negation: A positive integer p is not a pumping length of a language L over Σ iff

∃s
(
|s| ≥ p ∧ s ∈ L ∧ ∀x∀y∀z

(
(s = xyz ∧ |y| > 0 ∧ |xy| ≤ p) → ∃i(i ≥ 0 ∧ xyiz /∈ L)

))
Informally:

Restating Pumping Lemma: If L is a regular language, then it has a pumping length.

Contrapositive: If L has no pumping length, then it is nonregular.

The Pumping Lemma cannot be used to prove that a language is regular.

The Pumping Lemma can be used to prove that a language is not regular.

Extra practice: Exercise 1.49 in the book.

Proof strategy: To prove that a language L is not regular,

• Consider an arbitrary positive integer p

• Prove that p is not a pumping length for L

• Conclude that L does not have any pumping length, and therefore it is not regular.

CC BY-NC-SA 2.0 Version August 7, 2024 (27)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: Σ = {0, 1}, L = {0n1n | n ≥ 0}.

Fix p an arbitrary positive integer. List strings that are in L and have length greater than or equal to p:

Pick s =

Suppose s = xyz with |xy| ≤ p and |y| > 0.

Then when i = , xyiz =

CC BY-NC-SA 2.0 Version August 7, 2024 (28)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: Σ = {0, 1}, L = {wwR | w ∈ {0, 1}∗}. Remember that the reverse of a string w is denoted wR

and means to write w in the opposite order, if w = w1 · · ·wn then wR = wn · · ·w1. Note: ε
R = ε.

Fix p an arbitrary positive integer. List strings that are in L and have length greater than or equal to p:

Pick s =

Suppose s = xyz with |xy| ≤ p and |y| > 0.

Then when i = , xyiz =

Example: Σ = {0, 1}, L = {0j1k | j ≥ k ≥ 0}.

Fix p an arbitrary positive integer. List strings that are in L and have length greater than or equal to p:

Pick s =

Suppose s = xyz with |xy| ≤ p and |y| > 0.

Then when i = , xyiz =

Example: Σ = {0, 1}, L = {0n1m0n | m,n ≥ 0}.

Fix p an arbitrary positive integer. List strings that are in L and have length greater than or equal to p:

Pick s =

Suppose s = xyz with |xy| ≤ p and |y| > 0.

Then when i = , xyiz =

CC BY-NC-SA 2.0 Version August 7, 2024 (29)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Extra practice:

Language s ∈ L s /∈ L Is the language regular or nonregular?

{anbn | 0 ≤ n ≤ 5}

{bnan | n ≥ 2}

{ambn | 0 ≤ m ≤ n}

{ambn | m ≥ n+ 3, n ≥ 0}

{bman | m ≥ 1, n ≥ 3}

{w ∈ {a, b}∗ | w = wR}

{wwR | w ∈ {a, b}∗}

Week4 wednesday

Regular sets are not the end of the story

• Many nice / simple / important sets are not regular

• Limitation of the finite-state automaton model: Can’t “count”, Can only remember finitely far into
the past, Can’t backtrack, Must make decisions in “real-time”

• We know actual computers are more powerful than this model...

The next model of computation. Idea: allow some memory of unbounded size. How?

• To generalize regular expressions: context-free grammars

• To generalize NFA: Pushdown automata, which is like an NFA with access to a stack: Number
of states is fixed, number of entries in stack is unbounded. At each step (1) Transition to new state
based on current state, letter read, and top letter of stack, then (2) (Possibly) push or pop a letter to
(or from) top of stack. Accept a string iff there is some sequence of states and some sequence of stack
contents which helps the PDA processes the entire input string and ends in an accepting state.

Is there a PDA that recognizes the nonregular language {0n1n | n ≥ 0}?

CC BY-NC-SA 2.0 Version August 7, 2024 (30)

https://creativecommons.org/licenses/by-nc-sa/2.0/

The PDA with state diagram above can be informally described as:

Read symbols from the input. As each 0 is read, push it onto the stack. As soon as 1s are seen,
pop a 0 off the stack for each 1 read. If the stack becomes empty and we are at the end of the
input string, accept the input. If the stack becomes empty and there are 1s left to read, or if 1s
are finished while the stack still contains 0s, or if any 0s appear in the string following 1s, reject
the input.

Trace the computation of this PDA on the input string 01.

Trace the computation of this PDA on the input string 011.

CC BY-NC-SA 2.0 Version August 7, 2024 (31)

https://creativecommons.org/licenses/by-nc-sa/2.0/

A PDA recognizing the set { } can be informally described as:

Read symbols from the input. As each 0 is read, push it onto the stack. As soon as 1s are seen,
pop a 0 off the stack for each 1 read. If the stack becomes empty and there is exactly one 1 left
to read, read that 1 and accept the input. If the stack becomes empty and there are either zero
or more than one 1s left to read, or if the 1s are finished while the stack still contains 0s, or if
any 0s appear in the input following 1s, reject the input.

Modify the state diagram below to get a PDA that implements this description:

Definition A pushdown automaton (PDA) is specified by a 6-tuple (Q,Σ,Γ, δ, q0, F) where Q is the
finite set of states, Σ is the input alphabet, Γ is the stack alphabet,

δ : Q× Σε × Γε → P(Q× Γε)

is the transition function, q0 ∈ Q is the start state, F ⊆ Q is the set of accept states.

Week4 friday

Draw the state diagram and give the formal definition of a PDA with Σ = Γ.

Draw the state diagram and give the formal definition of a PDA with Σ ∩ Γ = ∅.

CC BY-NC-SA 2.0 Version August 7, 2024 (32)

https://creativecommons.org/licenses/by-nc-sa/2.0/

For the PDA state diagrams below, Σ = {0, 1}.

Mathematical description of language State diagram of PDA recognizing language
Γ = {$,#}

Γ = {@, 1}

{0i1j0k | i, j, k ≥ 0}

Note: alternate notation is to replace ; with →

Big picture: PDAs were motivated by wanting to add some memory of unbounded size to NFA. How do we
accomplish a similar enhancement of regular expressions to get a syntactic model that is more expressive?

DFA, NFA, PDA: Machines process one input string at a time; the computation of a machine on its input
string reads the input from left to right.

Regular expressions: Syntactic descriptions of all strings that match a particular pattern; the language
described by a regular expression is built up recursively according to the expression’s syntax

Context-free grammars: Rules to produce one string at a time, adding characters from the middle,
beginning, or end of the final string as the derivation proceeds.

CC BY-NC-SA 2.0 Version August 7, 2024 (33)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week6 monday

We are ready to introduce a formal model that will capture a notion of general purpose computation.

• Similar to DFA, NFA, PDA: input will be an arbitrary string over a fixed alphabet.

• Different from NFA, PDA: machine is deterministic.

• Different from DFA, NFA, PDA: read-write head can move both to the left and to the right, and can
extend to the right past the original input.

• Similar to DFA, NFA, PDA: transition function drives computation one step at a time by moving
within a finite set of states, always starting at designated start state.

• Different from DFA, NFA, PDA: the special states for rejecting and accepting take effect immediately.

(See more details: Sipser p. 166)

Formally: a Turing machine is M = (Q,Σ,Γ, δ, q0, qaccept, qreject) where δ is the transition function

δ : Q× Γ → Q× Γ× {L,R}

The computation of M on a string w over Σ is:

• Read/write head starts at leftmost position on tape.

• Input string is written on |w|-many leftmost cells of tape, rest of the tape cells have the blank symbol.
Tape alphabet is Γ with ∈ Γ and Σ ⊆ Γ. The blank symbol /∈ Σ.

• Given current state of machine and current symbol being read at the tape head, the machine transitions
to next state, writes a symbol to the current position of the tape head (overwriting existing symbol),
and moves the tape head L or R (if possible).

• Computation ends if and when machine enters either the accept or the reject state. This is called
halting. Note: qaccept ̸= qreject.

The language recognized by the Turing machine M , is L(M) = {w ∈ Σ∗ | w is accepted by M},
which is defined as

{w ∈ Σ∗ | computation of M on w halts after entering the accept state}

CC BY-NC-SA 2.0 Version August 7, 2024 (34)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Formal definition:

Sample computation:

q0 ↓
0 0 0

The language recognized by this machine is . . .

Describing Turing machines (Sipser p. 185) To define a Turing machine, we could give a

• Formal definition: the 7-tuple of parameters including set of states, input alphabet, tape alphabet,
transition function, start state, accept state, and reject state; or,

• Implementation-level definition: English prose that describes the Turing machine head move-
ments relative to contents of tape, and conditions for accepting / rejecting based on those contents.

• High-level description: description of algorithm (precise sequence of instructions), without im-
plementation details of machine. As part of this description, can “call” and run another TM as a
subroutine.

CC BY-NC-SA 2.0 Version August 7, 2024 (35)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Fix Σ = {0, 1}, Γ = {0, 1, } for the Turing machines with the following state diagrams:

Example of string accepted:
Example of string rejected:

Implementation-level description

High-level description

Example of string accepted:
Example of string rejected:

Implementation-level description

High-level description

CC BY-NC-SA 2.0 Version August 7, 2024 (36)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example of string accepted:
Example of string rejected:

Implementation-level description

High-level description

Example of string accepted:
Example of string rejected:

Implementation-level description

High-level description

CC BY-NC-SA 2.0 Version August 7, 2024 (37)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week6 wednesday

Sipser Figure 3.10

Conventions in state diagram of TM: b → R label means b → b, R and all arrows missing from diagram
represent transitions with output (qreject, , R)

Implementation level description of this machine:

Zig-zag across tape to corresponding po-
sitions on either side of # to check
whether the characters in these positions
agree. If they do not, or if there is no #,
reject. If they do, cross them off.

Once all symbols to the left of the # are
crossed off, check for any un-crossed-off
symbols to the right of #; if there are
any, reject; if there aren’t, accept.

The language recognized by this machine is

{w#w | w ∈ {0, 1}∗}

Computation on input string 01#01

q1 ↓
0 1 # 0 1

CC BY-NC-SA 2.0 Version August 7, 2024 (38)

https://creativecommons.org/licenses/by-nc-sa/2.0/

High-level description of this machine is

Recall: High-level descriptions of Turing machine al-
gorithms are written as indented text within quo-
tation marks. Stages of the algorithm are typically
numbered consecutively. The first line specifies the
input to the machine, which must be a string.

Extra practice

Computation on input string 01#1

q1 ↓
0 1 # 1

CC BY-NC-SA 2.0 Version August 7, 2024 (39)

https://creativecommons.org/licenses/by-nc-sa/2.0/

A language L is recognized by a Turing machine M means

A Turing machine M recognizes a language L means

A Turing machine M is a decider means

A language L is decided by a Turing machine M means

A Turing machine M decides a language L means

Fix Σ = {0, 1}, Γ = {0, 1, } for the Turing machines with the following state diagrams:

Decider? Yes / No Decider? Yes / No

Decider? Yes / No Decider? Yes / No

CC BY-NC-SA 2.0 Version August 7, 2024 (40)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week6 friday

ATuring-recognizable language is a set of strings that is the language recognized by some Turing machine.
We also say that such languages are recognizable.

A Turing-decidable language is a set of strings that is the language recognized by some decider. We also
say that such languages are decidable.

An unrecognizable language is a language that is not Turing-recognizable.

An undecidable language is a language that is not Turing-decidable.

True or False: Any decidable language is also recognizable.

True or False: Any recognizable language is also decidable.

True or False: Any undecidable language is also unrecognizable.

True or False: Any unrecognizable language is also undecidable.

CC BY-NC-SA 2.0 Version August 7, 2024 (41)

https://creativecommons.org/licenses/by-nc-sa/2.0/

True or False: The class of Turing-decidable languages is closed under complementation.

Using formal definition:

Using high-level description:

Church-Turing Thesis (Sipser p. 183): The informal notion of algorithm is formalized completely and
correctly by the formal definition of a Turing machine. In other words: all reasonably expressive models of
computation are equally expressive with the standard Turing machine.

CC BY-NC-SA 2.0 Version August 7, 2024 (42)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Definition: A language L over an alphabet Σ is called co-recognizable if its complement, defined as
Σ∗ \ L = {x ∈ Σ∗ | x /∈ L}, is Turing-recognizable.

Theorem (Sipser Theorem 4.22): A language is Turing-decidable if and only if both it and its complement
are Turing-recognizable.

Proof, first direction: Suppose language L is Turing-decidable. WTS that both it and its complement
are Turing-recognizable.

Proof, second direction: Suppose language L is Turing-recognizable, and so is its complement. WTS
that L is Turing-decidable.

Notation: The complement of a set X is denoted with a superscript c, Xc, or an overline, X.

CC BY-NC-SA 2.0 Version August 7, 2024 (43)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Claim: If two languages (over a fixed alphabet Σ) are Turing-decidable, then their union is as well.

Proof:

CC BY-NC-SA 2.0 Version August 7, 2024 (44)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Claim: If two languages (over a fixed alphabet Σ) are Turing-recognizable, then their union is as well.

Proof:

Week7 wednesday

The Church-Turing thesis posits that each algorithm can be implemented by some Turing
machine.

Describing algorithms (Sipser p. 185) To define a Turing machine, we could give a

• Formal definition: the 7-tuple of parameters including set of states, input alphabet, tape alphabet,
transition function, start state, accept state, and reject state. This is the low-level programming view
that models the logic computation flow in a processor.

• Implementation-level definition: English prose that describes the Turing machine head move-
ments relative to contents of tape, and conditions for accepting / rejecting based on those contents.
This level describes memory management and implementing data access with data structures.

– Mention the tape or its contents (e.g. “Scan the tape from left to right until a blank is seen.”)

– Mention the tape head (e.g. “Return the tape head to the left end of the tape.”)

• High-level description of algorithm executed by Turing machine: description of algorithm (precise
sequence of instructions), without implementation details of machine. High-level descriptions of Turing
machine algorithms are written as indented text within quotation marks. Stages of the algorithm are
typically numbered consecutively. The first line specifies the input to the machine, which must be a
string.

– Use other Turing machines as subroutines (e.g. “Run M on w”)

– Build new machines from existing machines using previously shown results (e.g. “Given NFA A
construct an NFA B such that L(B) = L(A)”)

– Use previously shown conversions and constructions (e.g. “Convert regular expression R to an
NFA N”)

Formatted inputs to Turing machine algorithms

The input to a Turing machine is always a string. The format of the input to a Turing machine can be
checked to interpret this string as representing structured data (like a csv file, the formal definition of a
DFA, another Turing machine, etc.)

This string may be the encoding of some object or list of objects.

Notation: ⟨O⟩ is the string that encodes the object O. ⟨O1, . . . , On⟩ is the string that encodes the list of
objects O1, . . . , On.

Assumption: There are algorithms (Turing machines) that can be called as subroutines to decode the string
representations of common objects and interact with these objects as intended (data structures). These
algorithms are able to “type-check” and string representations for different data structures are unique.

CC BY-NC-SA 2.0 Version August 7, 2024 (45)

https://creativecommons.org/licenses/by-nc-sa/2.0/

For example, since there are algorithms to answer each of the following questions, by Church-Turing thesis,
there is a Turing machine that accepts exactly those strings for which the answer to the question is “yes”

• Does a string over {0, 1} have even length?

• Does a string over {0, 1} encode a string of ASCII characters?1

• Does a DFA have a specific number of states?

• Do two NFAs have any state names in common?

• Do two CFGs have the same start variable?

A computational problem is decidable iff language encoding its positive problem instances is decidable.

The computational problem “Does a specific DFA accept a given string?” is encoded by the language

{representations of DFAs M and strings w such that w ∈ L(M)}
={⟨M,w⟩ | M is a DFA, w is a string, w ∈ L(M)}

The computational problem “Is the language generated by a CFG empty?” is encoded by the language

{representations of CFGs G such that L(G) = ∅}
={⟨G⟩ | G is a CFG, L(G) = ∅}

The computational problem “Is the given Turing machine a decider?” is encoded by the language

{representations of TMs M such that M halts on every input}
={⟨M⟩ | M is a TM and for each string w,M halts on w}

Note: writing down the language encoding a computational problem is only the first step in determining if
it’s recognizable, decidable, or . . .

Deciding a computational problem means building / defining a Turing machine that recognizes the language
encoding the computational problem, and that is a decider.

1An introduction to ASCII is available on the w3 tutorial here.

CC BY-NC-SA 2.0 Version August 7, 2024 (46)

https://www.w3schools.com/charsets/ref_html_ascii.asp
https://creativecommons.org/licenses/by-nc-sa/2.0/

Week7 friday

Some classes of computational problems will help us understand the differences between the machine models
we’ve been studying. (Sipser Section 4.1)

Acceptance problem

. . . for DFA ADFA {⟨B,w⟩ | B is a DFA that accepts input string w}

. . . for NFA ANFA {⟨B,w⟩ | B is a NFA that accepts input string w}

. . . for regular expressions AREX {⟨R,w⟩ | R is a regular expression that generates input string w}

. . . for CFG ACFG {⟨G,w⟩ | G is a context-free grammar that generates input string w}

. . . for PDA APDA {⟨B,w⟩ | B is a PDA that accepts input string w}

Language emptiness testing

. . . for DFA EDFA {⟨A⟩ | A is a DFA and L(A) = ∅}

. . . for NFA ENFA {⟨A⟩ | A is a NFA and L(A) = ∅}

. . . for regular expressions EREX {⟨R⟩ | R is a regular expression and L(R) = ∅}

. . . for CFG ECFG {⟨G⟩ | G is a context-free grammar and L(G) = ∅}

. . . for PDA EPDA {⟨A⟩ | A is a PDA and L(A) = ∅}

Language equality testing

. . . for DFA EQDFA {⟨A,B⟩ | A and B are DFAs and L(A) = L(B)}

. . . for NFA EQNFA {⟨A,B⟩ | A and B are NFAs and L(A) = L(B)}

. . . for regular expressions EQREX {⟨R,R′⟩ | R and R′ are regular expressions and L(R) = L(R′)}

. . . for CFG EQCFG {⟨G,G′⟩ | G and G′ are CFGs and L(G) = L(G′)}

. . . for PDA EQPDA {⟨A,B⟩ | A and B are PDAs and L(A) = L(B)}

Example strings in ADFA

Example strings in EDFA

Example strings in EQDFA

CC BY-NC-SA 2.0 Version August 7, 2024 (47)

https://creativecommons.org/licenses/by-nc-sa/2.0/

M1 = “On input ⟨M,w⟩, where M is a DFA and w is a string:

0. Type check encoding to check input is correct type. If not, reject.

1. Simulate M on input w (by keeping track of states in M , transition function of M , etc.)

2. If the simulations ends in an accept state of M , accept. If it ends in a non-accept state of
M , reject. ”

What is L(M1)?

Is M1 a decider?

Alternate description: Sometimes omit step 0 from listing and do implicit type check.

Synonyms: “Simulate”, “run”, “call”.

CC BY-NC-SA 2.0 Version August 7, 2024 (48)

https://creativecommons.org/licenses/by-nc-sa/2.0/

True / False: AREX = ANFA = ADFA

True / False: AREX ∩ ANFA = ∅, AREX ∩ ADFA = ∅, ADFA ∩ ANFA = ∅

A Turing machine that decides ANFA is:

A Turing machine that decides AREX is:

EDFA = {⟨A⟩ | A is a DFA and L(A) = ∅}. True/False: A Turing machine that decides EDFA is

M2 =“On input ⟨M⟩ where M is a DFA,

1. For integer i = 1, 2, . . .

2. Let si be the ith string over the alphabet of M (ordered in string order).

3. Run M on input si.

4. If M accepts, . If M rejects, increment i and keep going.”

Choose the correct option to help fill in the blank so that M2 recognizes EDFA

A. accepts

B. rejects

C. loop for ever

D. We can’t fill in the blank in any way to make this work

CC BY-NC-SA 2.0 Version August 7, 2024 (49)

https://creativecommons.org/licenses/by-nc-sa/2.0/

M3 = “ On input ⟨M⟩ where M is a DFA,

1. Mark the start state of M .

2. Repeat until no new states get marked:

3. Loop over the states of M .

4. Mark any unmarked state that has an incoming edge from a marked state.

5. If no accept state of A is marked, ; otherwise, ”.

To build a Turing machine that decides EQDFA, notice that

L1 = L2 iff ((L1 ∩ L2) ∪ (L2 ∩ L1)) = ∅

There are no elements that are in one set and not the other

MEQDFA =

Summary: We can use the decision procedures (Turing machines) of decidable problems as subroutines
in other algorithms. For example, we have subroutines for deciding each of ADFA, EDFA, EQDFA. We
can also use algorithms for known constructions as subroutines in other algorithms. For example, we have
subroutines for: counting the number of states in a state diagram, counting the number of characters in
an alphabet, converting DFA to a DFA recognizing the complement of the original language or a DFA
recognizing the Kleene star of the original language, constructing a DFA or NFA from two DFA or NFA
so that we have a machine recognizing the language of the union (or intersection, concatenation) of the
languages of the original machines; converting regular expressions to equivalent DFA; converting DFA to
equivalent regular expressions, etc.

Week3 friday

Definition and Theorem: For an alphabet Σ, a language L over Σ is called regular exactly when L is
recognized by some DFA, which happens exactly when L is recognized by some NFA, and happens exactly
when L is described by some regular expression

We saw that: The class of regular languages is closed under complementation, union, intersection, set-wise
concatenation, and Kleene star.

Prove or Disprove: There is some alphabet Σ for which there is some language recognized by an NFA
but not by any DFA.

Prove or Disprove: There is some alphabet Σ for which there is some finite language not described by
any regular expression over Σ.

Prove or Disprove: If a language is recognized by an NFA then the complement of this language is not
recognized by any DFA.

CC BY-NC-SA 2.0 Version August 7, 2024 (50)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Fix alphabet Σ. Is every language L over Σ regular?

Set Cardinality

{0, 1}

{0, 1}∗

P({0, 1})

The set of all languages over {0, 1}

The set of all regular expressions over {0, 1}

The set of all regular languages over {0, 1}

Strategy: Find an invariant property that is true of all regular languages. When analyzing a given
language, if the invariant is not true about it, then the language is not regular.

CC BY-NC-SA 2.0 Version August 7, 2024 (51)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Pumping Lemma (Sipser Theorem 1.70): If A is a regular language, then there is a number p (a pumping
length) where, if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz
such that

• |y| > 0

• for each i ≥ 0, xyiz ∈ A

• |xy| ≤ p.

Proof illustration

True or False: A pumping length for A = {0, 1}∗ is p = 5.

CC BY-NC-SA 2.0 Version August 7, 2024 (52)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week10 monday

In practice, computers (and Turing machines) don’t have infinite tape, and we can’t afford to wait un-
boundedly long for an answer. “Decidable” isn’t good enough - we want “Efficiently decidable”.

For a given algorithm working on a given input, how long do we need to wait for an answer? How does the
running time depend on the input in the worst-case? average-case? We expect to have to spend more time
on computations with larger inputs.

A language is recognizable if

A language is decidable if

A language is efficiently decidable if

A function is computable if

A function is efficiently computable if

Definition (Sipser 7.1): For M a deterministic decider, its running time is the function f : N → N given
by

f(n) = max number of steps M takes before halting, over all inputs of length n

Definition (Sipser 7.7): For each function t(n), the time complexity class TIME(t(n)), is defined by

TIME(t(n)) = {L | L is decidable by a Turing machine with running time in O(t(n))}

An example of an element of TIME(1) is

An example of an element of TIME(n) is

Note: TIME(1) ⊆ TIME(n) ⊆ TIME(n2)

Definition (Sipser 7.12) : P is the class of languages that are decidable in polynomial time on a deterministic
1-tape Turing machine

P =
⋃
k

TIME(nk)

Compare to exponential time: brute-force search.

Theorem (Sipser 7.8): Let t(n) be a function with t(n) ≥ n. Then every t(n) time deterministic multitape
Turing machine has an equivalent O(t2(n)) time deterministic 1-tape Turing machine.

CC BY-NC-SA 2.0 Version August 7, 2024 (53)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Definition (Sipser 7.1): For M a deterministic decider, its running time is the function f : N → N given
by

f(n) = max number of steps M takes before halting, over all inputs of length n

Definition (Sipser 7.7): For each function t(n), the time complexity class TIME(t(n)), is defined by

TIME(t(n)) = {L | L is decidable by a Turing machine with running time in O(t(n))}

Definition (Sipser 7.12) : P is the class of languages that are decidable in polynomial time on a deterministic
1-tape Turing machine

P =
⋃
k

TIME(nk)

Definition (Sipser 7.9): For N a nodeterministic decider. The running time of N is the function f : N → N
given by

f(n) = max number of steps N takes on any branch before halting, over all inputs of length n

Definition (Sipser 7.21): For each function t(n), the nondeterministic time complexity classNTIME(t(n)),
is defined by

NTIME(t(n)) = {L | L is decidable by a nondeterministic Turing machine with running time in O(t(n))}

NP =
⋃
k

NTIME(nk)

True or False: TIME(n2) ⊆ NTIME(n2)

True or False: NTIME(n2) ⊆ TIME(n2)

Every problem in NP is decidable with an exponential-time algorithm

Nondeterministic approach: guess a possible solution, verify that it works.

Brute-force (worst-case exponential time) approach: iterate over all possible solutions, for each one, check
if it works.

CC BY-NC-SA 2.0 Version August 7, 2024 (54)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Examples in P

Can’t use nondeterminism; Can use multiple tapes; Often need to be “more clever” than näıve / brute force
approach

PATH = {⟨G, s, t⟩ | G is digraph with n nodes there is path from s to t}

Use breadth first search to show in P

RELPRIME = {⟨x, y⟩ | x and y are relatively prime integers}

Use Euclidean Algorithm to show in P

L(G) = {w | w is generated by G}

(where G is a context-free grammar). Use dynamic programming to show in P .

Examples in NP

“Verifiable” i.e. NP, Can be decided by a nondeterministic TM in polynomial time, best known deterministic
solution may be brute-force, solution can be verified by a deterministic TM in polynomial time.

HAMPATH = {⟨G, s, t⟩ | G is digraph with n nodes, there is path from s to t that goes through every node exactly once}

V ERTEX − COV ER = {⟨G, k⟩ | G is an undirected graph with n nodes that has a k-node vertex cover}

CLIQUE = {⟨G, k⟩ | G is an undirected graph with n nodes that has a k-clique}

SAT = {⟨X⟩ | X is a satisfiable Boolean formula with n variables}

Problems in P Problems in NP
(Membership in any) regular language Any problem in P

(Membership in any) context-free language
ADFA SAT
EDFA CLIQUE
EQDFA V ERTEX − COV ER
PATH HAMPATH

RELPRIME . . .
. . .

Notice: NP ⊆ {L | L is decidable} so ATM /∈ NP

Million-dollar question: Is P = NP?

One approach to trying to answer it is to look for hardest problems in NP and then (1) if we can show
that there are efficient algorithms for them, then we can get efficient algorithms for all problems in NP so
P = NP , or (2) these problems might be good candidates for showing that there are problems in NP for
which there are no efficient algorithms.

CC BY-NC-SA 2.0 Version August 7, 2024 (55)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week10 wednesday

Definition (Sipser 7.29) Language A is polynomial-time mapping reducible to language B, written
A ≤P B, means there is a polynomial-time computable function f : Σ∗ → Σ∗ such that for every x ∈ Σ∗

x ∈ A iff f(x) ∈ B.

The function f is called the polynomial time reduction of A to B.

Theorem (Sipser 7.31): If A ≤P B and B ∈ P then A ∈ P .

Proof:

Definition (Sipser 7.34; based in Stephen Cook and Leonid Levin’s work in the 1970s): A language B is
NP-complete means (1) B is in NP and (2) every language A in NP is polynomial time reducible to B.

Theorem (Sipser 7.35): If B is NP-complete and B ∈ P then P = NP .

Proof:

CC BY-NC-SA 2.0 Version August 7, 2024 (56)

https://creativecommons.org/licenses/by-nc-sa/2.0/

3SAT: A literal is a Boolean variable (e.g. x) or a negated Boolean variable (e.g. x̄). A Boolean formula is
a 3cnf-formula if it is a Boolean formula in conjunctive normal form (a conjunction of disjunctive clauses
of literals) and each clause has three literals.

3SAT = {⟨ϕ⟩ | ϕ is a satisfiable 3cnf-formula}

Example string in 3SAT
⟨(x ∨ ȳ ∨ z̄) ∧ (x̄ ∨ y ∨ z) ∧ (x ∨ y ∨ z)⟩

Example string not in 3SAT

⟨(x ∨ y ∨ z) ∧ (x ∨ y ∨ z̄) ∧ (x ∨ ȳ ∨ z) ∧ (x ∨ ȳ ∨ z̄) ∧ (x̄ ∨ y ∨ z) ∧ (x̄ ∨ y ∨ z̄) ∧ (x̄ ∨ ȳ ∨ z) ∧ (x̄ ∨ ȳ ∨ z̄)⟩

Cook-Levin Theorem: 3SAT is NP -complete.

Are there other NP -complete problems? To prove that X is NP -complete

• From scratch: prove X is in NP and that all NP problems are polynomial-time reducible to X.

• Using reduction: prove X is in NP and that a known-to-be NP -complete problem is polynomial-time
reducible to X.

CC BY-NC-SA 2.0 Version August 7, 2024 (57)

https://creativecommons.org/licenses/by-nc-sa/2.0/

CLIQUE: A k-clique in an undirected graph is a maximally connected subgraph with k nodes.

CLIQUE = {⟨G, k⟩ | G is an undirected graph with a k-clique}

Example string in CLIQUE

Example string not in CLIQUE

Theorem (Sipser 7.32):
3SAT ≤P CLIQUE

Given a Boolean formula in conjunctive normal form with k clauses and three literals per clause, we will
map it to a graph so that the graph has a clique if the original formula is satisfiable and the graph does
not have a clique if the original formula is not satisfiable.

The graph has 3k vertices (one for each literal in each clause) and an edge between all vertices except

• vertices for two literals in the same clause

• vertices for literals that are negations of one another

Example: (x ∨ ȳ ∨ z̄) ∧ (x̄ ∨ y ∨ z) ∧ (x ∨ y ∨ z)

CC BY-NC-SA 2.0 Version August 7, 2024 (58)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week10 friday

Model of Computation Class of Languages

Deterministic finite automata: formal definition,
how to design for a given language, how to describe
language of a machine? Nondeterministic finite au-
tomata: formal definition, how to design for a given
language, how to describe language of a machine? Reg-
ular expressions: formal definition, how to design for a
given language, how to describe language of expression?
Also: converting between different models.

Class of regular languages: what are the clo-
sure properties of this class? which languages are
not in the class? using pumping lemma to prove
nonregularity.

Push-down automata: formal definition, how to de-
sign for a given language, how to describe language of a
machine? Context-free grammars: formal definition,
how to design for a given language, how to describe lan-
guage of a grammar?

Class of context-free languages: what are the
closure properties of this class? which languages
are not in the class?

Turing machines that always halt in polynomial time P

Nondeterministic Turing machines that always halt in
polynomial time

NP

Deciders (Turing machines that always halt): formal
definition, how to design for a given language, how to
describe language of a machine?

Class of decidable languages: what are the
closure properties of this class? which languages
are not in the class? using diagonalization and
mapping reduction to show undecidability

Turing machines formal definition, how to design for a
given language, how to describe language of a machine?

Class of recognizable languages: what are the
closure properties of this class? which languages
are not in the class? using closure and mapping
reduction to show unrecognizability

CC BY-NC-SA 2.0 Version August 7, 2024 (59)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Given a language, prove it is regular

Strategy 1: construct DFA recognizing the language and prove it works.

Strategy 2: construct NFA recognizing the language and prove it works.

Strategy 3: construct regular expression recognizing the language and prove it works.

“Prove it works” means . . .

Example: L = {w ∈ {0, 1}∗ | w has odd number of 1s or starts with 0}

Using NFA

Using regular expressions

CC BY-NC-SA 2.0 Version August 7, 2024 (60)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: Select all and only the options that result in a true statement: “To show a language A is not
regular, we can. . . ”

a. Show A is finite

b. Show there is a CFG generating A

c. Show A has no pumping length

d. Show A is undecidable

CC BY-NC-SA 2.0 Version August 7, 2024 (61)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: What is the language generated by the CFG with rules

S → aSb | bY | Y a

Y → bY | Y a | ε

CC BY-NC-SA 2.0 Version August 7, 2024 (62)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: Prove that the language T = {⟨M⟩ | M is a Turing machine and L(M) is infinite} is undecid-
able.

CC BY-NC-SA 2.0 Version August 7, 2024 (63)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: Prove that the class of decidable languages is closed under concatenation.

CC BY-NC-SA 2.0 Version August 7, 2024 (64)

https://creativecommons.org/licenses/by-nc-sa/2.0/

