Week6

Monday: Turing machines

We are ready to introduce a formal model that will capture a notion of general purpose computation.

o Similar to DFA, NFA, PDA: input will be an arbitrary string over a fixed alphabet.
e Different from NFA, PDA: machine is deterministic.

e Different from DFA, NFA, PDA: read-write head can move both to the left and to the right, and can
extend to the right past the original input.

e Similar to DFA, NFA, PDA: transition function drives computation one step at a time by moving
within a finite set of states, always starting at designated start state.

o Different from DFA, NFA, PDA: the special states for rejecting and accepting take effect immediately.

(See more details: Sipser p. 166)

Formally: a Turing machine is M = (Q, X, 1,9, o, Gaccept, Greject) Where 0 is the transition function
0:QxT = QxT x{L,R}
The computation of M on a string w over ¥ is:

e Read/write head starts at leftmost position on tape.

e Input string is written on |w|-many leftmost cells of tape, rest of the tape cells have the blank symbol.
Tape alphabet is I" with . € I' and ¥ C I'. The blank symbol . ¢ ¥.

e Given current state of machine and current symbol being read at the tape head, the machine transitions
to next state, writes a symbol to the current position of the tape head (overwriting existing symbol),
and moves the tape head L or R (if possible).

e Computation ends if and when machine enters either the accept or the reject state. This is called
halting. Note: qaceept 7 Greject-

The language recognized by the Turing machine M, is L(M) = {w € ¥* | w is accepted by M},
which is defined as

{w € ¥* | computation of M on w halts after entering the accept state}

CC BY-NC-SA 2.0 Version August 7, 2024 (1)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Formal definition:

Sample computation:

q0]

The language recognized by this machine is ...

Describing Turing machines (Sipser p. 185) To define a Turing machine, we could give a

e Formal definition: the 7-tuple of parameters including set of states, input alphabet, tape alphabet,
transition function, start state, accept state, and reject state; or,

e Implementation-level definition: English prose that describes the Turing machine head move-
ments relative to contents of tape, and conditions for accepting / rejecting based on those contents.

e High-level description: description of algorithm (precise sequence of instructions), without im-
plementation details of machine. As part of this description, can “call” and run another TM as a
subroutine.

CC BY-NC-SA 2.0 Version August 7, 2024 (2)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Fix ¥ = {0,1}, I' = {0, 1, .} for the Turing machines with the following state diagrams:

Example of string accepted:
Example of string rejected:

Implementation-level description

High-level description

Example of string accepted:
Example of string rejected:

Implementation-level description

High-level description

)

&)

CC BY-NC-SA 2.0 Version August 7, 2024 (3)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example of string accepted:
Example of string rejected:

Implementation-level description

High-level description

Example of string accepted:
Example of string rejected:

Implementation-level description

High-level description

CC BY-NC-SA 2.0 Version August 7, 2024 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Wednesday: Describing Turing machines and algorithms

Sipser Figure 3.10

Conventions in state diagram of TM: b — R label means b — b, R and all arrows missing from diagram
represent transitions with output (greject, -, R)

Computation on input string 01401

q 4

Implementation level description of this machine: ‘ ‘ ‘ ‘ ‘ ‘

Zig-zag across tape to corresponding po-
sitions on either side of # to check ‘ ‘ ‘ ‘ ‘ ‘
whether the characters in these positions
agree. If they do not, or if there is no #, \ \ \ \ \ \
reject. If they do, cross them off.

Once all symbols to the left of the # are
crossed off, check for any un-crossed-off ‘ ‘ ‘ ‘ ‘ ‘
symbols to the right of #; if there are
any, reject; if there aren’t, accept. ‘ ‘ ‘ ‘ ‘ ‘

The language recognized by this machine is

{whw | w e {0,1}7} [T T T 1

CC BY-NC-SA 2.0 Version August 7, 2024 (5)

https://creativecommons.org/licenses/by-nc-sa/2.0/

High-level description of this machine is

Recall: High-level descriptions of Turing machine al-
gorithms are written as indented text within quo-
tation marks. Stages of the algorithm are typically
numbered consecutively. The first line specifies the
input to the machine, which must be a string.

Ezxtra practice

Computation on input string 01#1

@l

0

1 1

i

[t [# [t][]]
N N O I
N N O I
N N O I
N N O I
N N R I
N N O I
N N O I
N N O I
N N O I
N N O I
N N O I
N N R I
N N O I
N N O I
N N R I
N N O I
N N O I
N N O I
N N O I
N N O I

CC BY-NC-SA 2.0 Version August 7, 2024 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

A language L is recognized by a Turing machine M means

A Turing machine M recognizes a language L means

A Turing machine M is a decider means

A language L is decided by a Turing machine M means

A Turing machine M decides a language L means

Fix ¥ = {0,1}, I' = {0, 1, .} for the Turing machines with the following state diagrams:

Decider? Yes / No Decider? Yes / No
1;0,R
0;o,R
v;o,R

Decider? Yes / No Decider? Yes / No

CC BY-NC-SA 2.0 Version August 7, 2024 (7)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Friday: Decidable and Recognizable Languages

A Turing-recognizable language is a set of strings that is the language recognized by some Turing machine.
We also say that such languages are recognizable.

A Turing-decidable language is a set of strings that is the language recognized by some decider. We also
say that such languages are decidable.

An unrecognizable language is a language that is not Turing-recognizable.

An undecidable language is a language that is not Turing-decidable.

True or False: Any decidable language is also recognizable.

True or False: Any recognizable language is also decidable.

True or False: Any undecidable language is also unrecognizable.

True or False: Any unrecognizable language is also undecidable.

CC BY-NC-SA 2.0 Version August 7, 2024 (8)

https://creativecommons.org/licenses/by-nc-sa/2.0/

True or False: The class of Turing-decidable languages is closed under complementation.

Using formal definition:

Using high-level description:

Church-Turing Thesis (Sipser p. 183): The informal notion of algorithm is formalized completely and
correctly by the formal definition of a Turing machine. In other words: all reasonably expressive models of
computation are equally expressive with the standard Turing machine.

CC BY-NC-SA 2.0 Version August 7, 2024 (9)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Definition: A language L over an alphabet X is called co-recognizable if its complement, defined as
Y*\ L ={reX*|x¢ L}, is Turing-recognizable.

Theorem (Sipser Theorem 4.22): A language is Turing-decidable if and only if both it and its complement
are Turing-recognizable.

Proof, first direction: Suppose language L is Turing-decidable. W'TS that both it and its complement
are Turing-recognizable.

Proof, second direction: Suppose language L is Turing-recognizable, and so is its complement. WTS
that L is Turing-decidable.

Notation: The complement of a set X is denoted with a superscript ¢, X¢, or an overline, X.

CC BY-NC-SA 2.0 Version August 7, 2024 (10)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Claim: If two languages (over a fixed alphabet) are Turing-decidable, then their union is as well.

Proof:

CC BY-NC-SA 2.0 Version August 7, 2024 (11)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Claim: If two languages (over a fixed alphabet X) are Turing-recognizable, then their union is as well.

Proof:

CC BY-NC-SA 2.0 Version August 7, 2024 (12)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week 6 at a glance
Textbook reading: Chapter 3, Section 4.1

For Monday: Page 165-166 Introduction to Section 3.1
For Wednesday: Example 3.9 on page 173

For Friday: Page 184-185 Terminology for describing Turing machines

Make sure you can:

e Use and design automata both formally and informally, including DFA, NFA, PDA, TM.

— Use precise notation to formally define the state diagram of DFA, NFA, PDA, TM.
— Use clear English to describe computations of DFA, NFA, PDA, TM informally
— Determine whether a language is recognizable by a (D or N) FA and/or a PDA
— Motivate the definition of a Turing machine

— Trace the computation of a Turing machine on given input

— Describe the language recognized by a Turing machine

— Determine if a Turing machine is a decider

— Given an implementation-level description of a Turing machine

— Use high-level descriptions to define and trace Turing machines

— Apply dovetailing in high-level definitions of machines

— State and use the Church-Turing thesis

e (lassify the computational complexity of a set of strings by determining whether it is regular, context-
free, decidable, or recognizable.

e Give examples of sets that are regular, context-free, decidable, or recognizable.

TODO:

Review quizzes based on class material each day.

Homework assignment 3 due this Thursday.

Project due next Thursday.

CC BY-NC-SA 2.0 Version August 7, 2024 (13)

https://creativecommons.org/licenses/by-nc-sa/2.0/

