
Week2

In Computer Science, we operationalize “hardest” as “requires most resources”, where resources might be
memory, time, parallelism, randomness, power, etc. To be able to compare “hardness” of problems, we use
a consistent description of problems

Input: String

Output: Yes/ No, where Yes means that the input string matches the pattern or property described by
the problem.

So far: we saw that regular expressions are convenient ways of describring patterns in strings. Finite
automata give a model of computation for processing strings and and classifying them into Yes (accepted)
or No (rejected). We will see that each set of strings is described by a regular expression if and only if there
is a FA that recognizes it. Another way of thinking about it: properties described by regular expressions
require exactly the computational power of these finite automata.

Wednesday: Finite automaton constructions

Review: Formal definition of finite automaton: M = (Q,Σ, δ, q0, F )

• Finite set of states Q

• Alphabet Σ

• Transition function δ

• Start state q0

• Accept (final) states F

In the state diagram of M , how many outgoing arrows are there from each state?

M = ({q, r, s}, {a, b}, δ, q, {q}) where δ is (rows labelled by states and columns labelled by symbols):

δ a b
q r r
r s s
s q q

The state diagram for M is

Give two examples of strings that are accepted by M and two examples of strings that are rejected by M :

L(M) =

A regular expression describing L(M) is
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Let the alphabet be Σ1 = {0, 1}.

A state diagram for a finite automaton that recognizes {w ∈ Σ∗
1 | w contains at most two 1’s} is

A state diagram for a finite automaton that recognizes {w ∈ Σ∗
1 | w contains more than two 1’s} is

Strategy: Add “labels” for states in the state diagram, e.g. “have not seen any of desired pattern yet” or
“sink state”. Then, we can use the analysis of the roles of the states in the state diagram to work towards
a description of the language recognized by the finite automaton.

A useful bit of terminology: the iterated transition function of a finite automaton M = (Q,Σ, δ, q0, F )
is defined recursively by

δ∗( (q, w) ) =


q if q ∈ Q,w = ε

δ( (q, a) ) if q ∈ Q, w = a ∈ Σ

δ( (δ∗(q, u), a) ) if q ∈ Q, w = ua where u ∈ Σ∗ and a ∈ Σ

Using this terminology, M accepts a string w over Σ if and only if δ∗( (q0, w) ) ∈ F .
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Suppose A is a language over an alphabet Σ. By definition, this means A is a subset of Σ∗. Claim: if there
is a DFA M such that L(M) = A then there is another DFA, let’s call it M ′, such that L(M ′) = A, the
complement of A, defined as {w ∈ Σ∗ | w /∈ A}.

Proof idea:

Proof:

Application: Design a finite automaton that recognizes the language of all strings over {a, b} whose length
is not a multiple of 3.

Note: On Friday, we’ll see a new kind of finite automaton. It will be helpful to distinguish it from the
machines we’ve been talking about so we’ll use Deterministic Finite Automaton (DFA) to refer to the
machines from Section 1.1.
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Friday: Nondeterministic automata

Nondeterministic finite automaton (Sipser Page 53) Given as M = (Q,Σ, δ, q0, F )

Finite set of states Q Can be labelled by any collection of distinct names. Default: q0, q1, . . .
Alphabet Σ Each input to the automaton is a string over Σ.
Arrow labels Σε Σε = Σ ∪ {ε}.

Arrows in the state diagram are labelled either by symbols from Σ or by ε
Transition function δ δ : Q× Σε → P(Q) gives the set of possible next states for a transition

from the current state upon reading a symbol or spontaneously moving.
Start state q0 Element of Q. Each computation of the machine starts at the start state.
Accept (final) states F F ⊆ Q.

M accepts the input string w ∈ Σ∗ if and only if there is a computation of M on w that processes the
whole string and ends in an accept state.

The formal definition of the NFA over {0, 1} given by this state diagram is:

The language over {0, 1} recognized by this NFA is:

Change the transition function to get a different NFA which accepts the empty string (and potentially other
strings too).

CC BY-NC-SA 2.0 Version August 7, 2024 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/


The state diagram of an NFA over {a, b} is below. The formal definition of this NFA is:

The language recognized by this NFA is:
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Week 2 at a glance

Textbook reading: Section 1.1, 1.2

For Wednesday: Pages 41-43 (Figures 1.18, 1.19, 1.20) (examples of automata and languages).

For Friday: Pages 48-50 (Figures 1.27, 1.29) (introduction to nondeterminism).

For Week 3 Monday: Pages 60-61 Theorem 1.47 and Theorem 1.48 (closure proofs).

Make sure you can:

• Use regular expressions and relate them to languages and automata

– Write and debug regular expressions using correct syntax

• Use precise notation to formally define the state diagram of DFA, NFA and use clear English to
describe computations of DFA, NFA informally.

– Design an automaton that recognizes a given language

– Specify a general construction for DFA based on parameters

– Design general constructions for DFA

– Motivate the use of nondeterminism

– Trace the computation(s) of a nondeterministic finite automaton

TODO:

#FinAid Assignment on Canvas https://canvas.ucsd.edu/courses/51649/quizzes/158899

Review quizzes based on class material each day.

Homework assignment 1 due Thursday.
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