
Week10

Monday: Time Complexity

In practice, computers (and Turing machines) don’t have infinite tape, and we can’t afford to wait un-
boundedly long for an answer. “Decidable” isn’t good enough - we want “Efficiently decidable”.

For a given algorithm working on a given input, how long do we need to wait for an answer? How does the
running time depend on the input in the worst-case? average-case? We expect to have to spend more time
on computations with larger inputs.

A language is recognizable if

A language is decidable if

A language is efficiently decidable if

A function is computable if

A function is efficiently computable if

Definition (Sipser 7.1): For M a deterministic decider, its running time is the function f : N → N given
by

f(n) = max number of steps M takes before halting, over all inputs of length n

Definition (Sipser 7.7): For each function t(n), the time complexity class TIME(t(n)), is defined by

TIME(t(n)) = {L | L is decidable by a Turing machine with running time in O(t(n))}

An example of an element of TIME(1) is

An example of an element of TIME(n) is

Note: TIME(1) ⊆ TIME(n) ⊆ TIME(n2)

Definition (Sipser 7.12) : P is the class of languages that are decidable in polynomial time on a deterministic
1-tape Turing machine

P =
⋃
k

TIME(nk)

Compare to exponential time: brute-force search.

Theorem (Sipser 7.8): Let t(n) be a function with t(n) ≥ n. Then every t(n) time deterministic multitape
Turing machine has an equivalent O(t2(n)) time deterministic 1-tape Turing machine.

CC BY-NC-SA 2.0 Version August 7, 2024 (1)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Definition (Sipser 7.1): For M a deterministic decider, its running time is the function f : N → N given
by

f(n) = max number of steps M takes before halting, over all inputs of length n

Definition (Sipser 7.7): For each function t(n), the time complexity class TIME(t(n)), is defined by

TIME(t(n)) = {L | L is decidable by a Turing machine with running time in O(t(n))}

Definition (Sipser 7.12) : P is the class of languages that are decidable in polynomial time on a deterministic
1-tape Turing machine

P =
⋃
k

TIME(nk)

Definition (Sipser 7.9): For N a nodeterministic decider. The running time of N is the function f : N → N
given by

f(n) = max number of steps N takes on any branch before halting, over all inputs of length n

Definition (Sipser 7.21): For each function t(n), the nondeterministic time complexity classNTIME(t(n)),
is defined by

NTIME(t(n)) = {L | L is decidable by a nondeterministic Turing machine with running time in O(t(n))}

NP =
⋃
k

NTIME(nk)

True or False: TIME(n2) ⊆ NTIME(n2)

True or False: NTIME(n2) ⊆ TIME(n2)

Every problem in NP is decidable with an exponential-time algorithm

Nondeterministic approach: guess a possible solution, verify that it works.

Brute-force (worst-case exponential time) approach: iterate over all possible solutions, for each one, check
if it works.

CC BY-NC-SA 2.0 Version August 7, 2024 (2)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Examples in P

Can’t use nondeterminism; Can use multiple tapes; Often need to be “more clever” than näıve / brute force
approach

PATH = {⟨G, s, t⟩ | G is digraph with n nodes there is path from s to t}

Use breadth first search to show in P

RELPRIME = {⟨x, y⟩ | x and y are relatively prime integers}

Use Euclidean Algorithm to show in P

L(G) = {w | w is generated by G}

(where G is a context-free grammar). Use dynamic programming to show in P .

Examples in NP

“Verifiable” i.e. NP, Can be decided by a nondeterministic TM in polynomial time, best known deterministic
solution may be brute-force, solution can be verified by a deterministic TM in polynomial time.

HAMPATH = {⟨G, s, t⟩ | G is digraph with n nodes, there is path from s to t that goes through every node exactly once}

V ERTEX − COV ER = {⟨G, k⟩ | G is an undirected graph with n nodes that has a k-node vertex cover}

CLIQUE = {⟨G, k⟩ | G is an undirected graph with n nodes that has a k-clique}

SAT = {⟨X⟩ | X is a satisfiable Boolean formula with n variables}

Problems in P Problems in NP
(Membership in any) regular language Any problem in P

(Membership in any) context-free language
ADFA SAT
EDFA CLIQUE
EQDFA V ERTEX − COV ER
PATH HAMPATH

RELPRIME . . .
. . .

Notice: NP ⊆ {L | L is decidable} so ATM /∈ NP

Million-dollar question: Is P = NP?

One approach to trying to answer it is to look for hardest problems in NP and then (1) if we can show
that there are efficient algorithms for them, then we can get efficient algorithms for all problems in NP so
P = NP , or (2) these problems might be good candidates for showing that there are problems in NP for
which there are no efficient algorithms.

CC BY-NC-SA 2.0 Version August 7, 2024 (3)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Wednesday: P vs. NP

Definition (Sipser 7.29) Language A is polynomial-time mapping reducible to language B, written
A ≤P B, means there is a polynomial-time computable function f : Σ∗ → Σ∗ such that for every x ∈ Σ∗

x ∈ A iff f(x) ∈ B.

The function f is called the polynomial time reduction of A to B.

Theorem (Sipser 7.31): If A ≤P B and B ∈ P then A ∈ P .

Proof:

Definition (Sipser 7.34; based in Stephen Cook and Leonid Levin’s work in the 1970s): A language B is
NP-complete means (1) B is in NP and (2) every language A in NP is polynomial time reducible to B.

Theorem (Sipser 7.35): If B is NP-complete and B ∈ P then P = NP .

Proof:

CC BY-NC-SA 2.0 Version August 7, 2024 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/

3SAT: A literal is a Boolean variable (e.g. x) or a negated Boolean variable (e.g. x̄). A Boolean formula is
a 3cnf-formula if it is a Boolean formula in conjunctive normal form (a conjunction of disjunctive clauses
of literals) and each clause has three literals.

3SAT = {⟨ϕ⟩ | ϕ is a satisfiable 3cnf-formula}

Example string in 3SAT
⟨(x ∨ ȳ ∨ z̄) ∧ (x̄ ∨ y ∨ z) ∧ (x ∨ y ∨ z)⟩

Example string not in 3SAT

⟨(x ∨ y ∨ z) ∧ (x ∨ y ∨ z̄) ∧ (x ∨ ȳ ∨ z) ∧ (x ∨ ȳ ∨ z̄) ∧ (x̄ ∨ y ∨ z) ∧ (x̄ ∨ y ∨ z̄) ∧ (x̄ ∨ ȳ ∨ z) ∧ (x̄ ∨ ȳ ∨ z̄)⟩

Cook-Levin Theorem: 3SAT is NP -complete.

Are there other NP -complete problems? To prove that X is NP -complete

• From scratch: prove X is in NP and that all NP problems are polynomial-time reducible to X.

• Using reduction: prove X is in NP and that a known-to-be NP -complete problem is polynomial-time
reducible to X.

CC BY-NC-SA 2.0 Version August 7, 2024 (5)

https://creativecommons.org/licenses/by-nc-sa/2.0/

CLIQUE: A k-clique in an undirected graph is a maximally connected subgraph with k nodes.

CLIQUE = {⟨G, k⟩ | G is an undirected graph with a k-clique}

Example string in CLIQUE

Example string not in CLIQUE

Theorem (Sipser 7.32):
3SAT ≤P CLIQUE

Given a Boolean formula in conjunctive normal form with k clauses and three literals per clause, we will
map it to a graph so that the graph has a clique if the original formula is satisfiable and the graph does
not have a clique if the original formula is not satisfiable.

The graph has 3k vertices (one for each literal in each clause) and an edge between all vertices except

• vertices for two literals in the same clause

• vertices for literals that are negations of one another

Example: (x ∨ ȳ ∨ z̄) ∧ (x̄ ∨ y ∨ z) ∧ (x ∨ y ∨ z)

CC BY-NC-SA 2.0 Version August 7, 2024 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Friday: Review

Model of Computation Class of Languages

Deterministic finite automata: formal definition,
how to design for a given language, how to describe
language of a machine? Nondeterministic finite au-
tomata: formal definition, how to design for a given
language, how to describe language of a machine? Reg-
ular expressions: formal definition, how to design for a
given language, how to describe language of expression?
Also: converting between different models.

Class of regular languages: what are the clo-
sure properties of this class? which languages are
not in the class? using pumping lemma to prove
nonregularity.

Push-down automata: formal definition, how to de-
sign for a given language, how to describe language of a
machine? Context-free grammars: formal definition,
how to design for a given language, how to describe lan-
guage of a grammar?

Class of context-free languages: what are the
closure properties of this class? which languages
are not in the class?

Turing machines that always halt in polynomial time P

Nondeterministic Turing machines that always halt in
polynomial time

NP

Deciders (Turing machines that always halt): formal
definition, how to design for a given language, how to
describe language of a machine?

Class of decidable languages: what are the
closure properties of this class? which languages
are not in the class? using diagonalization and
mapping reduction to show undecidability

Turing machines formal definition, how to design for a
given language, how to describe language of a machine?

Class of recognizable languages: what are the
closure properties of this class? which languages
are not in the class? using closure and mapping
reduction to show unrecognizability

CC BY-NC-SA 2.0 Version August 7, 2024 (7)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Given a language, prove it is regular

Strategy 1: construct DFA recognizing the language and prove it works.

Strategy 2: construct NFA recognizing the language and prove it works.

Strategy 3: construct regular expression recognizing the language and prove it works.

“Prove it works” means . . .

Example: L = {w ∈ {0, 1}∗ | w has odd number of 1s or starts with 0}

Using NFA

Using regular expressions

CC BY-NC-SA 2.0 Version August 7, 2024 (8)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: Select all and only the options that result in a true statement: “To show a language A is not
regular, we can. . . ”

a. Show A is finite

b. Show there is a CFG generating A

c. Show A has no pumping length

d. Show A is undecidable

CC BY-NC-SA 2.0 Version August 7, 2024 (9)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: What is the language generated by the CFG with rules

S → aSb | bY | Y a

Y → bY | Y a | ε

CC BY-NC-SA 2.0 Version August 7, 2024 (10)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: Prove that the language T = {⟨M⟩ | M is a Turing machine and L(M) is infinite} is undecid-
able.

CC BY-NC-SA 2.0 Version August 7, 2024 (11)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: Prove that the class of decidable languages is closed under concatenation.

CC BY-NC-SA 2.0 Version August 7, 2024 (12)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week 10 at a glance

Textbook reading: Chapter 7

For Monday: Definition 7.1 (page 276)

For Wednesday: Definition 7.7 (page 279)

Make sure you can:

• Classify the computational complexity of a set of strings by determining whether it is decidable or
undecidable and recognizable or unrecognizable.

– Distinguish between computability and complexity

– Articulate motivating questions of complexity

– Define NP-completeness

– Give examples of PTIME-decidable, NPTIME-decidable, and NP-complete problems

• Use mapping reduction to deduce the complexity of a language by comparing to the complexity of
another.

– Distinguish between computability and complexity

– Articulate motivating questions of complexity

– Use appropriate reduction (e.g. mapping, Turing, polynomial-time) to deduce the complexity of
a language by comparing to the complexity of another.

– Use polynomial-time reduction to prove NP-completeness

CC BY-NC-SA 2.0 Version August 7, 2024 (13)

https://creativecommons.org/licenses/by-nc-sa/2.0/

TODO:

Student Evaluations of Teaching forms: Evaluations are open for completion anytime BEFORE 8AM
on Saturday, March 16. Access your SETs from the Evaluations site

https://academicaffairs.ucsd.edu/Modules/Evals

You will separately evaluate each of your listed instructors for each enrolled course.

NEW WINTER 2024 SET INCENTIVE LOTTERY: In Winter 2024, students who complete all
of their student evaluation forms for their undergraduate course will be entered into a lottery to win
one of 5 $100 Visa gift cards! To be entered into the lottery, students must complete at least one
instructor evaluation for EACH of their undergraduate courses. They will be automatically entered
when they have completed an instructor evaluation for all of their undergraduate courses.

Review quizzes based on class material each day; review quiz for Friday includes opportunity for
feedback for course.

Homework assignment 5 due Thursday.

CC BY-NC-SA 2.0 Version August 7, 2024 (14)

https://academicaffairs.ucsd.edu/Modules/Evals
https://creativecommons.org/licenses/by-nc-sa/2.0/

