HW2CSE105W24: Homework assignment 2

CSE105W24

Due: February 1st at 5pm (no penalty late submission until 8am next
morning), via Gradescope

In this assignment,

You will practice designing multiple representations of regular languages and working with gen-
eral constructions of automata to demonstrate the richness of the class of regular languages. You
will also distinguish between regular and nonregular languages using both closure arguments and
the pumping lemma.

Resources: To review the topics for this assignment, see the class material from Weeks 2-4. We
will post frequently asked questions and our answers to them in a pinned Piazza post.

Reading and extra practice problems: Sipser Chapter 1, Section 2.2. Chapter 1 exercises
1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11, 1.12, 1.14, 1.15, 1.16, 1.17, 1.19, 1.20, 1.21, 1.22, 1.29, 1.30.
Chapter 1 problems 1.49, 1.50, 1.51.

For all HW assignments: Weekly homework may be done individually or in groups of up
to 3 students. You may switch HW partners for different HW assignments. Please ensure
your name(s) and PID(s) are clearly visible on the first page of your homework submission and
then upload the PDF to Gradescope. If working in a group, submit only one submission per
group: one partner uploads the submission through their Gradescope account and then adds the
other group member(s) to the Gradescope submission by selecting their name(s) in the “Add
Group Members” dialog box. You will need to re-add your group member(s) every time you
resubmit a new version of your assignment. Each homework question will be graded either for
correctness (including clear and precise explanations and justifications of all answers) or fair
effort completeness. For “graded for correctness” questions: collaboration is allowed only with
CSE 105 students in your group; if your group has questions about a problem, you may ask in
drop-in help hours or post a private post (visible only to the Instructors) on Piazza. For “graded
for completeness” questions: collaboration is allowed with any CSE 105 students this quarter; if
your group has questions about a problem, you may ask in drop-in help hours or post a public
post on Piazza.

All submitted homework for this class must be typed. You can use a word processing editor if

Copyright Mia Minnes, 2024, Version August 7, 2024 (1)



you like (Microsoft Word, Open Office, Notepad, Vim, Google Docs, etc.) but you might find
it useful to take this opportunity to learn LaTeX. LaTeX is a markup language used widely in
computer science and mathematics. The homework assignments are typed using LaTeX and you
can use the source files as templates for typesetting your solutions. To generate state diagrams of
machines, we recommend using Flap.js or JFLAP. Photographs of clearly hand-drawn diagrams
may also be used. We recommend that you submit early drafts to Gradescope so that in case of
any technical difficulties, at least some of your work is present. You may update your submission
as many times as you’d like up to the deadline.

Integrity reminders

e Problems should be solved together, not divided up between the partners. The homework
is designed to give you practice with the main concepts and techniques of the course, while
getting to know and learn from your classmates.

e You may not collaborate on homework questions graded for correctness with anyone other
than your group members. You may ask questions about the homework in office hours (of
the instructor, TAs, and/or tutors) and on Piazza (as private notes viewable only to the
Instructors). You cannot use any online resources about the course content other than the
class material from this quarter — this is primarily to ensure that we all use consistent nota-
tion and definitions (aligned with the textbook) and also to protect the learning experience
you will have when the ‘aha’ moments of solving the problem authentically happen.

e Do not share written solutions or partial solutions for homework with other students in
the class who are not in your group. Doing so would dilute their learning experience and
detract from their success in the class.

You will submit this assignment via Gradescope (https://www.gradescope.com) in the assign-
ment called “hw2CSE105W24”.

Assigned questions

1. Number representations (12 points): Integers can be represented using base b expansions,
for a convenient choice of base b: for b an integer greater than 1 and n a positive integer, the
base b expansion of n is defined to be

(ak—l e 'Cllao)b

where k is a positive integer, ag, aq, ..., ar_1 are nonnegative integers less than b, a1 # 0, and

k—1
n = E a;b’
i=0

Notice: The base b expansion of a positive integer n is a string over the alphabet {x € Z | 0 <
x < b} whose leftmost character is nonzero.

Copyright Mia Minnes, 2024, Version August 7, 2024 (2)


https://www.gradescope.com

An important property of base b expansions of integers is that, for each integer b greater than 1,
each positive integer n = (ax_1 - - - a1a0)p, and each nonnegative integer a less than b,

bn+ a = (ax_1 - - ajapa)y

In other words, shifting the base b expansion to the left results in multiplying the integer value
by the base. In this question we’ll explore building deterministic finite automata that recognize
languages that correspond to useful sets of integers.

(a) (Graded for correctness)[[| Design a DFA that recognizes the set of binary (base 2) expansions
of positive integers that are powers of 2. A complete solution will include the state diagram
of your DFA and a brief justification of your construction by explaining the role each state
plays in the machine, as well as a brief justification about how the strings accepted and
rejected by the machine connect to the specified language.

Hints: (1) A power of 2 is an integer x that can be written as 2¥ for some nonnegative
integer y, (2) the DFA should accept the strings 100, 10 and 100000 and should reject the
strings 010, 1101, and e (can you see why?).

(b) (Graded for completeness) [| Consider arbitrary positive integer m. Design a DFA that
recognizes the set of binary (base 2) expansions of positive integers that are multiples of
m. A complete solution will include the formal definition of your DFA (paramterized by m)
and a brief justification of your construction by explaining the role each state plays in the
machine, as well as a brief justification about how the strings accepted and rejected by the
machine connect to the specified language.

Hints: (1) Consider having a state for each possible remainder upon division by m. (2) To
determine transitions, notice that reading a new character will shift what we already read
over by one slot.

(¢) (Graded for correctness) Choose a positive integer mg between 4 and 8 (inclusive) and draw
the state diagram of a DFA recognizing the language over {0, 1,2}

{w € {0,1,2}" | w is a base 3 expansion of a positive integer that is a multiple of mg}

A complete solution will include the state diagram of your DFA and a brief justification of
your construction by explaining the role each state plays in the machine, as well as a brief
justification about how the strings accepted and rejected by the machine connect to the
specified language.

IThis means your solution will be evaluated not only on the correctness of your answers, but on your ability
to present your ideas clearly and logically. You should explain how you arrived at your conclusions, using
mathematically sound reasoning. Whether you use formal proof techniques or write a more informal argument
for why something is true, your answers should always be well-supported. Your goal should be to convince the
reader that your results and methods are sound.

2This means you will get full credit so long as your submission demonstrates honest effort to answer the
question. You will not be penalized for incorrect answers. To demonstrate your honest effort in answering the
question, we expect you to include your attempt to answer *each* part of the question. If you get stuck with
your attempt, you can still demonstrate your effort by explaining where you got stuck and what you did to try
to get unstuck.

Copyright Mia Minnes, 2024, Version August 7, 2024 (3)



Bonus extension to think about (ungraded): Which other languages related to sets of integers can
be proved to be regular using a similar strategy?

2. Multiple representations (10 points): For any language L C ¥*, recall that we define its
complement as

L=~-L={weX|w¢lL}

That is, the complement of L contains all and only those strings which are not in L. Our notation
for regular expressions does not include the complement symbol. However, it turns out that the
complement of a language described by a regular expression is guaranteed to also be describable
by a (different) regular expression. For example, over the alphabet ¥ = {0, 1}, the complement
of the language described by the regular expression >*0 is described by the regular expression
e U X*1 because any string that does not end in 0 must either be the empty string or end in 1.

For each of the regular expressions R over the alphabet ¥ = {a,b} below, write the regular
expression for L(R). Your regular expressions may use the symbols &, ¢, a, b, and the following
operations to combine them: union, concatenation, and Kleene star.

Briefly justify why your solution for each part works by giving plain English descriptions of the
language described by the regular expression and of its complement and connecting them to the
regular expression via relevant definitions. An English description that is more detailed than
simply negating the description in the original language will likely be helpful in the justification.

Alternatively, you can justify your solution by first designing a DFA that recognizes L(R), using
the construction from class and the book to modify this DFA to get a new DFA that recog-
nizes m, and then applying the constructions from class and the book to convert this new
DFA to a regular expression.

For each part of the question, clearly state which approach you're taking and include enough
intermediate steps to illustrate your work.

*

(a) (Graded for correctness) a*b
(b) (Graded for correctness) (a U b)ab*

3. Applying general constructions (12 points): In this question, you’ll practice working
with formal general constructions for NFAs and translating between state diagrams and formal
definitions. Consider the following general construction: Let Ny = (@, X, 1,1, F1) be a NFA
and assume that gy ¢ Q. Define the new NFA Ny = (Q U {q}, X, 02, qo, {q1}) where

02+ (@ U{go}) x Xe = P(QU{q})

is defined by
{d€Qlqeid,a)} ifgeQ aci.
do(q,a) =< Fy ifg=qy,a=c¢
0 ifg=qy,a€eX

(a) (Graded for correctness) Illustrate this construction by defining a specific example NFA N
and applying the construction above to create a new NFA. Your example NFA should

Copyright Mia Minnes, 2024, Version August 7, 2024 (4)



Have exactly three states (all reachable from the start state),

Have at least one spontaneous move (arrow labelled ¢),

Accept at least one string and reject at least one string, and
e Not have any states labelled qq.

Apply the construction above to create the new NFA. A complete submission will include
the state diagram of your example NFA N and the state diagram of the NFA resulting from
this construction.

(Graded for correctness) Use Theorem 1.39 on page 55 of the book (see also page 7 in Week
3 notes) to construct a DFA equivalent to your example NFA N from part (a). A complete
submission will include the state diagram of your example NFA N and the state diagram
of the DFA resulting from this construction, with the correct state labels for this DFA.
You may prune the DFA so that only the “macro-states” reachable from the start state are
included.

(Graded for completeness) Explain the relationship between N; and Ny in the general con-
struction. Give an example string that is accepted by your example NFA N and is rejected
by the NFA that results from applying the general construction that illustrates this rela-
tionship, or explain why there is no such example string.

4. Pumping (8 points):

(a)

(Graded for correctness) Give an example of a language over the alphabet {0,1} that has
cardinality 3 and for which 5 is a pumping length and 4 is not a pumping length. A complete
solution will give a clear and precise description of the language, a justification for why 5 is
a pumping length, and a justification for why 4 is not a pumping length. Is this language
regular?

(Graded for completeness) Consider the following attempted “proof” that the set
X = {uw | v and w are strings over {0, 1} and have the same length}

is nonregular.

“Proof” that X is not regular using the Pumping Lemma: Let p be an arbitrary
positive integer. We will show that p is not a pumping length for X.

Choose s to be the string 1707, which is in X because we can choose ©v = 17 and
w = 0P which each have length p. Since s is in X and has length greater than or
equal to p, if p were to be a pumping length for X, s ought to be pump’able. That
is, there should be a way of dividing s into parts x,y, z where s = zyz, |y| > 0,
|zy| < p, and for each i > 0, xy'z € X. Suppose z,y, z are such that s = zyz,
ly| > 0 and |zy| < p. Since the first p letters of s are all 1 and |zy| < p, we know
that z and y are made up of all 1s. If we let i = 2, we get a string zy’z that is
not in X because repeating y twice adds 1s to v but not to w, and strings in X
are required to have u and w be the same length. Thus, s is not pumpable (even
though it should have been if p were to be a pumping length) and so p is not a
pumping length for X. Since p was arbitrary, we have demonstrated that X has
no pumping length. By the Pumping Lemma, this implies that X is nonregular.

Copyright Mia Minnes, 2024, Version August 7, 2024 (5)



Find the (first and/or most significant) logical error in the “proof” and describe why it’s
wrong. Then, either prove that the set is actually regular (by finding a regular expression
that describes it or a DFA/NFA that recognizes it, and justifying why) or fix the proof so
that it is logically sound.

(¢) (Graded for completeness) In class and in the reading so far, we've seen the following ex-
amples of nonregular sets:

{0"1™ | n >0} {0"1™ | 0 <m < n} {0"1™0" | n,m > 0}
{0"1™ | n > 2} {071 ] 0 <4} {we {0,1}" | w=w"}
{0"1™ | 0 < n<m} {o'1"* | 0 <4} {ww® | w e {0,1}*}

Modify one of these sets in some way and use the Pumping Lemma to prove that the
resulting set is still nonregular.

5. Regular and nonregular languages (8 points): In Week 2’s review quiz, we saw the defi-
nition that a set X is said to be closed under an operation if, for any elements in X, applying
to them gives an element in X. For example, the set of integers is closed under multiplication
because if we take any two integers, their product is also an integer .

Prove or disprove each closure claim statement below about the class of regular languages and
the class of nonregular languages. Your arguments may refer to theorems proved in the textbook
and class, and if they do, should include specific page numbers and references (i.e. write out the
claim that was proved in the book and/or class).

Recall the definitions we have:

For languages L1, Ly over the alphabet ¥; = {0, 1}, we have the associated sets of strings
SUBSTRING(Ly) = {w € %7 | there exist a,b € ¥} such that awb € Ly}

and
LyoLy={w e ]| w=uv for some strings v € Ly and v € Lo}

(a) (Graded for completeness) The set of regular languages over {0, 1} is closed under set-wise
concatenation.

(b) (Graded for completeness) The set of nonregular languages over {0, 1} is closed under set-
wise concatenation.

(¢) (Graded for completeness) The set of regular languages over {0,1} is closed under the
SUBSTRING operation.

(d) (Graded for completeness) The set of nonregular languages over {0, 1} is closed under the
SUBSTRING operation.

Copyright Mia Minnes, 2024, Version August 7, 2024 (6)



