HWI1CSE105W24: Homework assignment 1

CSE105W24

Due: January 18th at 5pm (no penalty late submission until 8am next
morning), via Gradescope

In this assignment,

You will practice reading and applying the definitions of alphabets, strings, languages, Kleene
star, and regular expressions. You will use regular expressions and relate them to languages
and finite automata. You will use precise notation to formally define the state diagram of finite
automata, and you will use clear English to describe computations of finite automata informally.

Resources: To review the topics for this assignment, see the class material from Week 1. We
will post frequently asked questions and our answers to them in a pinned Piazza post.

Reading and extra practice problems: Sipser Section 0, 1.3, 1.1. Chapter 1 exercises 1.1,
1.2, 1.3, 1.18, 1.23.

For all HW assignments: Weekly homework may be done individually or in groups of up
to 3 students. You may switch HW partners for different HW assignments. Please ensure
your name(s) and PID(s) are clearly visible on the first page of your homework submission and
then upload the PDF to Gradescope. If working in a group, submit only one submission per
group: one partner uploads the submission through their Gradescope account and then adds the
other group member(s) to the Gradescope submission by selecting their name(s) in the “Add
Group Members” dialog box. You will need to re-add your group member(s) every time you
resubmit a new version of your assignment. Each homework question will be graded either for
correctness (including clear and precise explanations and justifications of all answers) or fair
effort completeness. For “graded for correctness” questions: collaboration is allowed only with
CSE 105 students in your group; if your group has questions about a problem, you may ask in
drop-in help hours or post a private post (visible only to the Instructors) on Piazza. For “graded
for completeness” questions: collaboration is allowed with any CSE 105 students this quarter; if
your group has questions about a problem, you may ask in drop-in help hours or post a public
post on Piazza.

All submitted homework for this class must be typed. You can use a word processing editor if
you like (Microsoft Word, Open Office, Notepad, Vim, Google Docs, etc.) but you might find
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it useful to take this opportunity to learn LaTeX. LaTeX is a markup language used widely in
computer science and mathematics. The homework assignments are typed using LaTeX and you
can use the source files as templates for typesetting your solutions. To generate state diagrams of
machines, we recommend using Flap.js or JELAP. Photographs of clearly hand-drawn diagrams
may also be used. We recommend that you submit early drafts to Gradescope so that in case of
any technical difficulties, at least some of your work is present. You may update your submission
as many times as you’d like up to the deadline.

Integrity reminders

e Problems should be solved together, not divided up between the partners. The homework
is designed to give you practice with the main concepts and techniques of the course, while
getting to know and learn from your classmates.

e You may not collaborate on homework questions graded for correctness with anyone other
than your group members. You may ask questions about the homework in office hours (of
the instructor, TAs, and/or tutors) and on Piazza (as private notes viewable only to the
Instructors). You cannot use any online resources about the course content other than the
class material from this quarter — this is primarily to ensure that we all use consistent nota-
tion and definitions (aligned with the textbook) and also to protect the learning experience
you will have when the ‘aha’ moments of solving the problem authentically happen.

e Do not share written solutions or partial solutions for homework with other students in
the class who are not in your group. Doing so would dilute their learning experience and
detract from their success in the class.

You will submit this assignment via Gradescope (https://www.gradescope.com) in the assign-
ment called “hwl1CSE105W24”.

Assigned questions

1. (Graded for completeness) E] Finding examples and edge cases (12 points):
With 3, ={0,1} and X5 = {a,b,c,d,e, f,g,h,i,j,k,l,m,n,0,p,q,r,s,t,u,v,w,z,y,z} and ' =
{07 1’ :L‘, y? Z}
(a) Give an example of the shortest string over ¥; that is meaningful to you in some way, and
explain why it’s meaningful to you.

(b) List all examples of strings of length 1 over 5 and explain why your list is exhaustive.

!This means you will get full credit so long as your submission demonstrates honest effort to answer the
question. You will not be penalized for incorrect answers. To demonstrate your honest effort in answering the
question, we expect you to include your attempt to answer *each®™ part of the question. If you get stuck with
your attempt, you can still demonstrate your effort by explaining where you got stuck and what you did to try
to get unstuck.
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(c) Calculate the number of distinct strings of length 3 over I'" and explain your calculation.
(d) With the ordering x < y < z < 0 < 1, list the first ten strings over I in string order.

(e) Give an example of a finite set that is a language over ¥; and over ¥y and over I'; or explain
why there is no such set.

(f) Give an example of an infinite set that is a language over ¥; and over I'; or explain why
there is no such set.

2. (Graded for completeness) Regular expressions (10 points):

(a) Give three regular expressions that all describe the set of all strings over {a, b} that have
even length. Ungraded bonus challenge: Make the expressions as different as possible!

(b) A friend tells you that each regular expression that has a Kleene star ( *) describes an infinite
language. Are they right? Either help them justify their claim or give a counterexample to
disprove it and then fix the formula.

3. (Graded for correctness) [ Functions over languages (15 points):

For languages L1, Ly over the alphabet X; = {0, 1}, we have the associated sets of strings
SUBSTRING(Ly) = {w € X7 | there exist a,b € ¥} such that awb € Ly}

and
Lyo Ly ={w € X} | w=uv for some strings u € L; and v € Ly}

(a) Specify an example language A over X; such that A # () and yet SUBSTRING(A) = (), or
explain why there is no such example. A complete solution will include either (1) a precise
and clear description of your example language A and a precise and clear description of the
result of computing SUBSTRING(A) using relevant definitions to justify this description and
to justify the set equality with @), or (2) a sufficiently general and correct argument why
there is no such example, referring back to the relevant definitions.

(b) Specify example languages B,C over 3; such that B # X} and C' # X7 and yet B o
C' = Xj, or explain why there are no such examples. A complete solution will include
either (1) a precise and clear description of your example languages B, C and a precise and
clear description of the result of computing B o C' using relevant definitions to justify this
description and to justify the set equality with X7, or (2) a sufficiently general and correct
argument why there is no such example, referring back to the relevant definitions.

(c) Specify example finite languages Ly, Lo over X such that LyoLs # Ly but |LioLs| = |L4], or
explain why there are no such examples. A complete solution will include either (1) a precise
and clear description of your example languages Lq, Ly and a precise and clear description

2This means your solution will be evaluated not only on the correctness of your answers, but on your ability
to present your ideas clearly and logically. You should explain how you arrived at your conclusions, using
mathematically sound reasoning. Whether you use formal proof techniques or write a more informal argument
for why something is true, your answers should always be well-supported. Your goal should be to convince the
reader that your results and methods are sound.
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of the result of computing L; o L, using relevant definitions to justify this description and
to justify the cardinality claims and set (in)equality claims, or (2) a sufficiently general and
correct argument why there is no such example, referring back to the relevant definitions.

4. (Graded for correctness) Finite automata (13 points):

Consider the finite automaton (@, 3, 0, qo, F') whose state diagram is depicted below

where @ = {q,q1,¢2,q3}, X = {0,1}, and F = {q}, and § : Q@ x ¥ — @ is specified by the
look-up table

(a)

0 1
q | @1 4o
q1 | 92 g3
g2 | 9o g3
g3 | 93 g3

A friend tries to summarize the transition function with the formula

g wheni=0and z=1
0(¢i,r) =< q3 when0<i<3andz=1
¢; whenj=(i+1) mod3andz =0

Are they right? Either help them justify their claim or give a counterexample to disprove
it and then fix their formula.

Give a regular expression R so that L(R) is the language recognized by this finite automaton.
Justify your answer by referring to the definition of the semantics of regular expressions
and computations of finite automata. Include an explanation for why each string in L(R)
is accepted by the finite automaton and for why each string not in L(R) is rejected by the
finite automaton.

Keeping the same set of states Q = {qo, q1, ¢2, ¢3}, alphabet ¥ = {0, 1}, same start state
qo, and same transition function ¢, choose a new set of accepting states F., so that the
new finite automaton that results accepts at least one string that the original one rejected
and rejects at least one string that the original one accepted, or explain why there is
no such choice of Fy.,. A complete solution will include either (1) a precise and clear
description of your choice of Fj., and a precise and clear the two example strings using
relevant definitions to justify them, or (2) a sufficiently general and correct argument why
there is no such example, referring back to the relevant definitions.
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HW2CSE105W24: Homework assignment 2 Due: February 1st at 5pm (no penalty late submis-
sion until 8am next morning), via Gradescope

In this assignment,

You will practice designing multiple representations of regular languages and working with gen-
eral constructions of automata to demonstrate the richness of the class of regular languages. You
will also distinguish between regular and nonregular languages using both closure arguments and
the pumping lemma.

Resources: To review the topics for this assignment, see the class material from Weeks 2-4. We
will post frequently asked questions and our answers to them in a pinned Piazza post.

Reading and extra practice problems: Sipser Chapter 1, Section 2.2. Chapter 1 exercises
14,1.5,1.6,1.7,1.8,1.9,1.10, 1.11, 1.12, 1.14, 1.15, 1.16, 1.17, 1.19, 1.20, 1.21, 1.22, 1.29, 1.30.
Chapter 1 problems 1.49, 1.50, 1.51.

For all HW assignments: Weekly homework may be done individually or in groups of up
to 3 students. You may switch HW partners for different HW assignments. Please ensure
your name(s) and PID(s) are clearly visible on the first page of your homework submission and
then upload the PDF to Gradescope. If working in a group, submit only one submission per
group: one partner uploads the submission through their Gradescope account and then adds the
other group member(s) to the Gradescope submission by selecting their name(s) in the “Add
Group Members” dialog box. You will need to re-add your group member(s) every time you
resubmit a new version of your assignment. FEach homework question will be graded either for
correctness (including clear and precise explanations and justifications of all answers) or fair
effort completeness. For “graded for correctness” questions: collaboration is allowed only with
CSE 105 students in your group; if your group has questions about a problem, you may ask in
drop-in help hours or post a private post (visible only to the Instructors) on Piazza. For “graded
for completeness” questions: collaboration is allowed with any CSE 105 students this quarter; if
your group has questions about a problem, you may ask in drop-in help hours or post a public
post on Piazza.

All submitted homework for this class must be typed. You can use a word processing editor if
you like (Microsoft Word, Open Office, Notepad, Vim, Google Docs, etc.) but you might find
it useful to take this opportunity to learn LaTeX. LaTeX is a markup language used widely in
computer science and mathematics. The homework assignments are typed using LaTeX and you
can use the source files as templates for typesetting your solutions. To generate state diagrams of
machines, we recommend using Flap.js or JFLAP. Photographs of clearly hand-drawn diagrams
may also be used. We recommend that you submit early drafts to Gradescope so that in case of
any technical difficulties, at least some of your work is present. You may update your submission
as many times as you’d like up to the deadline.

Integrity reminders
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e Problems should be solved together, not divided up between the partners. The homework
is designed to give you practice with the main concepts and techniques of the course, while
getting to know and learn from your classmates.

e You may not collaborate on homework questions graded for correctness with anyone other
than your group members. You may ask questions about the homework in office hours (of
the instructor, TAs, and/or tutors) and on Piazza (as private notes viewable only to the
Instructors). You cannot use any online resources about the course content other than the
class material from this quarter — this is primarily to ensure that we all use consistent nota-
tion and definitions (aligned with the textbook) and also to protect the learning experience
you will have when the ‘aha’ moments of solving the problem authentically happen.

e Do not share written solutions or partial solutions for homework with other students in
the class who are not in your group. Doing so would dilute their learning experience and
detract from their success in the class.

You will submit this assignment via Gradescope (https://www.gradescope.com) in the assign-
ment called “hw2CSE105W24”.

Assigned questions
1. Number representations (12 points): Integers can be represented using base b expansions,

for a convenient choice of base b: for b an integer greater than 1 and n a positive integer, the
base b expansion of n is defined to be

(ak—l e 'Cllao)b

where k is a positive integer, ag, aq, ..., ar_1 are nonnegative integers less than b, a1 # 0, and

Notice: The base b expansion of a positive integer n is a string over the alphabet {x € Z | 0 <
x < b} whose leftmost character is nonzero.

An important property of base b expansions of integers is that, for each integer b greater than 1,
each positive integer n = (ax_1 - - - a1ap)p, and each nonnegative integer a less than b,

bn+a = (ax_1 - arapa)y

In other words, shifting the base b expansion to the left results in multiplying the integer value
by the base. In this question we’ll explore building deterministic finite automata that recognize
languages that correspond to useful sets of integers.
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(a) (Graded for correctness) | Design a DFA that recognizes the set of binary (base 2) expansions
of positive integers that are powers of 2. A complete solution will include the state diagram
of your DFA and a brief justification of your construction by explaining the role each state
plays in the machine, as well as a brief justification about how the strings accepted and
rejected by the machine connect to the specified language.

Hints: (1) A power of 2 is an integer x that can be written as 2¥ for some nonnegative
integer y, (2) the DFA should accept the strings 100, 10 and 100000 and should reject the
strings 010, 1101, and e (can you see why?).

(b) (Graded for completeness) E| Consider arbitrary positive integer m. Design a DFA that
recognizes the set of binary (base 2) expansions of positive integers that are multiples of
m. A complete solution will include the formal definition of your DFA (paramterized by m)
and a brief justification of your construction by explaining the role each state plays in the
machine, as well as a brief justification about how the strings accepted and rejected by the
machine connect to the specified language.
Hints: (1) Consider having a state for each possible remainder upon division by m. (2) To
determine transitions, notice that reading a new character will shift what we already read
over by one slot.

(¢) (Graded for correctness) Choose a positive integer mg between 4 and 8 (inclusive) and draw
the state diagram of a DFA recognizing the language over {0, 1,2}

{w € {0,1,2}" | w is a base 3 expansion of a positive integer that is a multiple of mg}

A complete solution will include the state diagram of your DFA and a brief justification of
your construction by explaining the role each state plays in the machine, as well as a brief
justification about how the strings accepted and rejected by the machine connect to the
specified language.

Bonus extension to think about (ungraded): Which other languages related to sets of integers can
be proved to be regular using a similar strategy?

2. Multiple representations (10 points): For any language L C ¥*| recall that we define its
complement as

L=-L={weX |w¢lL}

That is, the complement of L contains all and only those strings which are not in L. Our notation
for regular expressions does not include the complement symbol. However, it turns out that the

3This means your solution will be evaluated not only on the correctness of your answers, but on your ability
to present your ideas clearly and logically. You should explain how you arrived at your conclusions, using
mathematically sound reasoning. Whether you use formal proof techniques or write a more informal argument
for why something is true, your answers should always be well-supported. Your goal should be to convince the
reader that your results and methods are sound.

4This means you will get full credit so long as your submission demonstrates honest effort to answer the
question. You will not be penalized for incorrect answers. To demonstrate your honest effort in answering the
question, we expect you to include your attempt to answer *each* part of the question. If you get stuck with
your attempt, you can still demonstrate your effort by explaining where you got stuck and what you did to try
to get unstuck.
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complement of a language described by a regular expression is guaranteed to also be describable
by a (different) regular expression. For example, over the alphabet ¥ = {0,1}, the complement
of the language described by the regular expression >*0 is described by the regular expression
€ U X*1 because any string that does not end in 0 must either be the empty string or end in 1.

For each of the regular expressions R over the alphabet ¥ = {a,b} below, write the regular
expression for L(R). Your regular expressions may use the symbols &, ¢, a, b, and the following
operations to combine them: union, concatenation, and Kleene star.

Briefly justify why your solution for each part works by giving plain English descriptions of the
language described by the regular expression and of its complement and connecting them to the
regular expression via relevant definitions. An English description that is more detailed than
simply negating the description in the original language will likely be helpful in the justification.

Alternatively, you can justify your solution by first designing a DFA that recognizes L(R), using
the construction from class and the book to modify this DFA to get a new DFA that recog-
nizes L(R), and then applying the constructions from class and the book to convert this new
DFA to a regular expression.

For each part of the question, clearly state which approach you're taking and include enough
intermediate steps to illustrate your work.

(a) (Graded for correctness) a*b*

(b) (Graded for correctness) (a U b)ab*

3. Applying general constructions (12 points): In this question, you’ll practice working
with formal general constructions for NFAs and translating between state diagrams and formal
definitions. Consider the following general construction: Let Ny = (@, X, 1, q1, F1) be a NFA
and assume that gy ¢ Q. Define the new NFA Ny = (Q U {q}, X, d2, qo, {q1}) where

0 1 (QUA{q}) x . = P(QU{q})

is defined by
{deQlqedld.a)} fqeQ aci
d2(q,a) = § Fy if g=qo,a=¢
0 ifqg=qp,aeX

(a) (Graded for correctness) Illustrate this construction by defining a specific example NFA N
and applying the construction above to create a new NFA. Your example NFA should

e Have exactly three states (all reachable from the start state),

Have at least one spontaneous move (arrow labelled ¢),

Accept at least one string and reject at least one string, and
e Not have any states labelled gq.

Apply the construction above to create the new NFA. A complete submission will include
the state diagram of your example NFA N and the state diagram of the NFA resulting from
this construction.
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(b)

(Graded for correctness) Use Theorem 1.39 on page 55 of the book (see also page 7 in Week
3 notes) to construct a DFA equivalent to your example NFA N from part (a). A complete
submission will include the state diagram of your example NFA N and the state diagram
of the DFA resulting from this construction, with the correct state labels for this DFA.
You may prune the DFA so that only the “macro-states” reachable from the start state are
included.

(Graded for completeness) Explain the relationship between N; and N in the general con-
struction. Give an example string that is accepted by your example NFA N and is rejected
by the NFA that results from applying the general construction that illustrates this rela-
tionship, or explain why there is no such example string.

4. Pumping (8 points):

(a)

(Graded for correctness) Give an example of a language over the alphabet {0, 1} that has
cardinality 3 and for which 5 is a pumping length and 4 is not a pumping length. A complete
solution will give a clear and precise description of the language, a justification for why 5 is
a pumping length, and a justification for why 4 is not a pumping length. Is this language
regular?

(Graded for completeness) Consider the following attempted “proof” that the set
X = {uww | v and w are strings over {0, 1} and have the same length}

is nonregular.

“Proof” that X is not regular using the Pumping Lemma: Let p be an arbitrary
positive integer. We will show that p is not a pumping length for X.

Choose s to be the string 1P0P, which is in X because we can choose u = 17 and
w = 0P which each have length p. Since s is in X and has length greater than or
equal to p, if p were to be a pumping length for X, s ought to be pump’able. That
is, there should be a way of dividing s into parts x,y, z where s = zyz, |y| > 0,
|lzy| < p, and for each i > 0, ry’z € X. Suppose z,y, z are such that s = zyz,
ly| > 0 and |zy| < p. Since the first p letters of s are all 1 and |zy| < p, we know
that z and y are made up of all 1s. If we let i = 2, we get a string zy’z that is
not in X because repeating y twice adds 1s to v but not to w, and strings in X
are required to have u and w be the same length. Thus, s is not pumpable (even
though it should have been if p were to be a pumping length) and so p is not a
pumping length for X. Since p was arbitrary, we have demonstrated that X has
no pumping length. By the Pumping Lemma, this implies that X is nonregular.

Find the (first and/or most significant) logical error in the “proof” and describe why it’s
wrong. Then, either prove that the set is actually regular (by finding a regular expression
that describes it or a DFA/NFA that recognizes it, and justifying why) or fix the proof so
that it is logically sound.

(Graded for completeness) In class and in the reading so far, we’ve seen the following ex-
amples of nonregular sets:
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{0"1" | n > 0} {0"1™ | 0 <m < n} {0"1™0" | n,m > 0}
{0"1™ | n > 2} {071 ] 0 <4} {we {0,1}* | w=w"}
{0"1™ | 0 < n<m} {01 | 0 <4} {ww? | w e {0,1}*}

Modify one of these sets in some way and use the Pumping Lemma to prove that the
resulting set is still nonregular.

5. Regular and nonregular languages (8 points): In Week 2’s review quiz, we saw the defi-
nition that a set X is said to be closed under an operation if, for any elements in X, applying
to them gives an element in X. For example, the set of integers is closed under multiplication
because if we take any two integers, their product is also an integer .

Prove or disprove each closure claim statement below about the class of regular languages and
the class of nonregular languages. Your arguments may refer to theorems proved in the textbook
and class, and if they do, should include specific page numbers and references (i.e. write out the
claim that was proved in the book and/or class).

Recall the definitions we have:

For languages Ly, Ly over the alphabet ¥; = {0, 1}, we have the associated sets of strings
SUBSTRING(L,) = {w € X7 | there exist a,b € ¥} such that awb € L}

and
LioLy={w € X} | w=wuv for some strings v € Ly and v € Ly}

(a) (Graded for completeness) The set of regular languages over {0, 1} is closed under set-wise
concatenation.

(b) (Graded for completeness) The set of nonregular languages over {0, 1} is closed under set-
wise concatenation.

(¢) (Graded for completeness) The set of regular languages over {0,1} is closed under the
SUBSTRING operation.

(d) (Graded for completeness) The set of nonregular languages over {0, 1} is closed under the
SUBSTRING operation.
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HW3CSE105W24: Homework assignment 3 Due: February 15th at 5pm (no penalty late sub-
mission until 8am next morning), via Gradescope

In this assignment,

You will practice with the definition of pushdown automata and context-free grammars and
reason about regular and context-free languages. You will also practice analyzing and designing
Turing machines.

Resources: To review the topics for this assignment, see the class material from Weeks 4-6. We
will post frequently asked questions and our answers to them in a pinned Piazza post.

Reading and extra practice problems: Sipser Chapter 2, Section 3.1 Chapter 2 exercises
2.1,2.2,23,2.4,25,2.6,2.7,2.9, 2.10, 2.11, 2.12, 2.13, 2.16, 2.17. Chapter 3 exercises 3.1, 3.2.

For all HW assignments: Weekly homework may be done individually or in groups of up
to 3 students. You may switch HW partners for different HW assignments. Please ensure
your name(s) and PID(s) are clearly visible on the first page of your homework submission and
then upload the PDF to Gradescope. If working in a group, submit only one submission per
group: one partner uploads the submission through their Gradescope account and then adds the
other group member(s) to the Gradescope submission by selecting their name(s) in the “Add
Group Members” dialog box. You will need to re-add your group member(s) every time you
resubmit a new version of your assignment. Each homework question will be graded either for
correctness (including clear and precise explanations and justifications of all answers) or fair
effort completeness. For “graded for correctness” questions: collaboration is allowed only with
CSE 105 students in your group; if your group has questions about a problem, you may ask in
drop-in help hours or post a private post (visible only to the Instructors) on Piazza. For “graded
for completeness” questions: collaboration is allowed with any CSE 105 students this quarter; if
your group has questions about a problem, you may ask in drop-in help hours or post a public
post on Piazza.

All submitted homework for this class must be typed. You can use a word processing editor if
you like (Microsoft Word, Open Office, Notepad, Vim, Google Docs, etc.) but you might find
it useful to take this opportunity to learn LaTeX. LaTeX is a markup language used widely in
computer science and mathematics. The homework assignments are typed using LaTeX and you
can use the source files as templates for typesetting your solutions. To generate state diagrams of
machines, we recommend using Flap.js or JELAP. Photographs of clearly hand-drawn diagrams
may also be used. We recommend that you submit early drafts to Gradescope so that in case of
any technical difficulties, at least some of your work is present. You may update your submission
as many times as you’d like up to the deadline.

Integrity reminders

e Problems should be solved together, not divided up between the partners. The homework
is designed to give you practice with the main concepts and techniques of the course, while
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getting to know and learn from your classmates.

e You may not collaborate on homework questions graded for correctness with anyone other
than your group members. You may ask questions about the homework in office hours (of
the instructor, TAs, and/or tutors) and on Piazza (as private notes viewable only to the
Instructors). You cannot use any online resources about the course content other than the
class material from this quarter — this is primarily to ensure that we all use consistent nota-
tion and definitions (aligned with the textbook) and also to protect the learning experience
you will have when the ‘aha’ moments of solving the problem authentically happen.

e Do not share written solutions or partial solutions for homework with other students in
the class who are not in your group. Doing so would dilute their learning experience and
detract from their success in the class.

You will submit this assignment via Gradescope (https://www.gradescope.com) in the assign-
ment called “hw3CSE105W24”.

Assigned questions

1. Constructions (18 points):
Consider the push-down automata M; and M, over {a, b} with stack alphabet {a, b} whose state

diagrams are

State diagram for M, State diagram for M,

b,e;a a, €, a b,a;e

start —> start —

(a) (Graded for completeness) | What is the language A; recognized by M; and what is the
language As recognized by Ms,? Include a sample string that is accepted and one that is
rejected for each of these PDA. Justify these examples with sample accepting computations
or with an explanation why there is no accepting computation.

(b) (Graded for correctness) [f| Design CFGs Gy and G over {a,b} so that L(G;) = A; and
L(G3) = As. A complete solution will include precise definitions for each of the parameters

b,a;e

5This means you will get full credit so long as your submission demonstrates honest effort to answer the
question. You will not be penalized for incorrect answers. To demonstrate your honest effort in answering the
question, we expect you to include your attempt to answer *each* part of the question. If you get stuck with
your attempt, you can still demonstrate your effort by explaining where you got stuck and what you did to try
to get unstuck.

6This means your solution will be evaluated not only on the correctness of your answers, but on your ability
to present your ideas clearly and logically. You should explain how you arrived at your conclusions, using
mathematically sound reasoning. Whether you use formal proof techniques or write a more informal argument
for why something is true, your answers should always be well-supported. Your goal should be to convince the
reader that your results and methods are sound.
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required to specify a CFG, as well as a brief explanation about why each string in A; can
be derived in G; and each string not in A; cannot be derived in G; (for i = 1,2).

(Graded for completeness) Remember that the definition of set-wise concatenation is: for
languages L1, Lo over the alphabet 3, we have the associated set of strings

Lyo Ly ={w e X" | w=wuv for some strings v € Ly and v € Lo}

In class (and in the review quiz) we learned that the class of context-free languages is
closed under set-wise concatenation. The proof of this closure claim using CFGs uses the
construction: given Gy = (V1,3, Ry, 51) and Gy = (V5,3, Ry, S2) with Vi NV, = () and
Snew & V1 U Vs, define a new CFG

G = (‘/1 U ‘/2 U {Snew}7 27 Rl U RQ U {Snew — 5182}7 Snew)

Apply this construction to your grammars from part (b) and give a sample derivation of a
string in A; o A, in this resulting grammar.

(Graded for correctness) If we try to extrapolate the construction that we used to prove that
the class of regular languages is closed under set-wise concategation, we would get the follow-
ing construction for PDAs: Given My = (Q1,%,1'1, 61, q1, F1) and My = (@2, 3, [y, 02, g2, F)
with Q1N Qe =0, define Q@ = Q1 UQ,, ' =T UT,, and

M = (Q7E7F757Q1>F2)

with § : Q@ x 3. x I'. — P(Q x I';) given by

01(q,a,b) ifge @\ Fi,ae X, bely,

d2(q, a,b) iftqge @y, acd,bels,
6(q,a,b) = < 6:1(q,a,b) ifge Fi,aeXorbely

01(q,a,0) U{(qe,e)} ifqge Fl,a=¢e,b=¢

0 otherwise

Apply this construction to the machines M; and M, from part (a), and then use the resulting
PDA to prove that this construction cannot be used to prove that the class of context-free
languages is closed under set-wise concatenation. A complete solution will include (1) the
state diagram of the machine M that results from applying this construction to M; and
M,, (2) an example of a string that is accepted by this PDA M but that is not in the
language A; o Ay with a description of the computation that witnesses that this string is
accepted by M and an explanation of why this string is not in A; o Ay by referring back to
the definitions of Ay, As, and set-wise concatenation.

2. Regular languages are context-free (10 points):

Informally, we think of regular languages as potentially simpler than context-free languages. In
this question, you’ll make this precise by showing that every regular language is context-free, in
two ways.
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(a)

(Graded for correctness) When we first introduced PDAs we saw that any NFA can be
transformed to a PDA by not using the stack of the PDA at all. Make this precise by
completing the following construction: Given a NFA N = (Q,%,0n,qo, F') we define a
PDA M with L(M) = L(N) by choosing ... A complete solution will have precise, correct
definitions for each of the defining parameters of M: the set of states, the input alphabet,
the stack alphabet, the transition function, the start state, and the set of accept states. Be
careful to use notation that matches the types of the objects involved.

(Graded for correctness) In the book on page 107, the top paragraph describes a procedure
for converting DFA to CFGs:

You can convert any DFA into an equivalent CFG as follows. Make a variable R;
for each state ¢; of the DFA. Add the rule R; — aR; to the CFG if 6(¢;,a) = ¢;
is a transition in the DFA. Add the rule R; — ¢ if ¢; is an accept state of the
DFA. Make Ry the start variable ofthe grammar, where ¢q is the start state of the
machine. Verify on your own that the resulting CFG generates the same language
that the DFA recognizes.

Use this construction to get a context-free grammar generating the language
{w € {0,1}* | w does not have 11 as a substring}

by (1) designing a DFA that recognizes this language and then (2) applying the construction
from the book to convert the DFA to an equivalent CFG. A complete submission will include
the state diagram of the DFA, a brief justification of why it recognizes the language, and then
the complete and precise definition of the CFG that results from applying the construction
from the book to this DFA. Ungraded bonus: take a sample string in the language and see
how the computation of the DFA on this string translates to a derivation in your grammar.

3. Classifying languages (12 points): On page 4 of the week 4 notes, we have the following
list of languages over the alphabet {a, b}

(a)

(b)

{a"" | 0<n<5} {ba"|n>2} {a™"|0<m<n}
{a™ |m>n+3n>0} {b"a"|m>1,n>3}
{w € {a,b}* | w=wR} {ww® | w € {a,b}*}

(Graded for completeness) Pick one of the regular languages and design a regular expression
that describes it. Briefly justify your regular expression by connecting the subexpressions
of it to the intended language and referencing relevant definitions.

(Graded for completeness) Pick another one of the regular languages and design a DFA that
recognizes it. Draw the state diagram of your DFA. Briefly justify your design by explaining
the role each state plays in the machine, as well as a brief justification about how the strings
accepted and rejected by the machine connect to the specified language.

(Graded for completeness) Pick one of the nonregular languages and design a PDA that
recognizes it. Draw the state diagram of your PDA. Briefly justify your design by explaining
the role each state plays in the machine, as well as a brief justification about how the strings
accepted and rejected by the machine connect to the specified language.
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(d)

(Graded for completeness) Pick one of the nonregular languages and write a CFG that
generates it. Briefly justify your design by by demonstrating how derivations in the grammar
relate to the intended language.

4. Turing machines (10 points): Consider the Turing machine 7" over the input alphabet
¥ = {0,1} with the state diagram below (the tape alphabet is I' = {0, 1, X,0}). Convention:
we do not include the node for the reject state grej and any missing transitions in the state
diagram have value (grej, [, R)

(a)

0,1—-R
O— L
q1 q2
— X, L
— X, L
O— L
q3 44
0,1— R

(Graded for correctness) Specify an example string wy of length 4 over ¥ that is accepted
by this Turing machine, or explain why there is no such example. A complete solution will
include either (1) a precise and clear description of your example string and a precise and
clear description of the accepting computation of the Turing machine on this string or (2)
a sufficiently general and correct argument why there is no such example, referring back to
the relevant definitions.

To describe a computation of a Turing machine, include the contents of the tape, the state
of the machine, and the location of the read/write head at each step in the computation.

Hint: In class we've drawn pictures to represent the configuration of the machine at each
step in a computation. You may do so or you may choose to describe these configurations
in words.

(Graded for correctness) Specify an example string ws of length 3 over ¥ that is rejected
by this Turing machine or explain why there is no such example. A complete solution will
include either (1) a precise and clear description of your example string and a precise and
clear description of the rejecting computation of the Turing machine on this string or (2)
a sufficiently general and correct argument why there is no such example, referring back to
the relevant definitions.

(Graded for correctness) Specify an example string ws of length 2 over ¥ on which the
computation of this Turing machine loops or explain why there is no such example. A
complete solution will include either (1) a precise and clear description of your example
string and a precise and clear description of the looping (non-halting) computation of the
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Turing machine on this string or (2) a sufficiently general and correct argument why there
is no such example, referring back to the relevant definitions.

(d) (Graded for completeness) Write an implementation level description of the Turing machine

T.

Copyright Mia Minnes, 2024, Version August 7, 2024 (16)



HW4CSE105W24: Homework assignment 4 Due: February 29th at 5pm (no penalty late sub-
mission until 8am next morning), via Gradescope

In this assignment, You will practice analyzing, designing, and working with Turing machines.
You will use general constructions and specific machines to explore the classes of recognizable
and decidable languages. You will explore various ways to encode machines as strings so that
computational problems can be recognized.

Resources: To review the topics for this assignment, see the class material from Weeks 5-7. We
will post frequently asked questions and our answers to them in a pinned Piazza post.

Reading and extra practice problems: Sipser Sections 3.1, 3.3, 4.1 Chapter 3 exercises 3.1,
3.2, 3.5, 3.8. Chapter 4 exercises 4.1, 4.2, 4.3, 4.4, 4.5.

For all HW assignments: Weekly homework may be done individually or in groups of up
to 3 students. You may switch HW partners for different HW assignments. Please ensure
your name(s) and PID(s) are clearly visible on the first page of your homework submission and
then upload the PDF to Gradescope. If working in a group, submit only one submission per
group: one partner uploads the submission through their Gradescope account and then adds the
other group member(s) to the Gradescope submission by selecting their name(s) in the “Add
Group Members” dialog box. You will need to re-add your group member(s) every time you
resubmit a new version of your assignment. FKach homework question will be graded either for
correctness (including clear and precise explanations and justifications of all answers) or fair
effort completeness. For “graded for correctness” questions: collaboration is allowed only with
CSE 105 students in your group; if your group has questions about a problem, you may ask in
drop-in help hours or post a private post (visible only to the Instructors) on Piazza. For “graded
for completeness” questions: collaboration is allowed with any CSE 105 students this quarter; if
your group has questions about a problem, you may ask in drop-in help hours or post a public
post on Piazza.

All submitted homework for this class must be typed. You can use a word processing editor if
you like (Microsoft Word, Open Office, Notepad, Vim, Google Docs, etc.) but you might find
it useful to take this opportunity to learn LaTeX. LaTeX is a markup language used widely in
computer science and mathematics. The homework assignments are typed using LaTeX and you
can use the source files as templates for typesetting your solutions. To generate state diagrams of
machines, we recommend using Flap.js or JELAP. Photographs of clearly hand-drawn diagrams
may also be used. We recommend that you submit early drafts to Gradescope so that in case of
any technical difficulties, at least some of your work is present. You may update your submission
as many times as you’d like up to the deadline.

Integrity reminders

e Problems should be solved together, not divided up between the partners. The homework
is designed to give you practice with the main concepts and techniques of the course, while
getting to know and learn from your classmates.
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e You may not collaborate on homework questions graded for correctness with anyone other
than your group members. You may ask questions about the homework in office hours (of
the instructor, TAs, and/or tutors) and on Piazza (as private notes viewable only to the
Instructors). You cannot use any online resources about the course content other than the
class material from this quarter — this is primarily to ensure that we all use consistent nota-
tion and definitions (aligned with the textbook) and also to protect the learning experience
you will have when the ‘aha’ moments of solving the problem authentically happen.

e Do not share written solutions or partial solutions for homework with other students in
the class who are not in your group. Doing so would dilute their learning experience and
detract from their success in the class.

You will submit this assignment via Gradescope (https://www.gradescope.com) in the assign-
ment called “hw4CSE105W24”.

Assigned questions

1. Classifying languages (10 points): Our first example of a more complicated Turing machine
was of a Turing machine that recognized the language {w#w | w € {0,1}*}, which we know is
not context-free. The language

{0"1"2" | n > 0}

is also not context-free.

(a) (Graded for correctness) [| Give an implementation-level description of a Turing machine
that recognizes this language.

(b) (Graded for completeness) E] Draw a state diagram of the Turing machine you gave in part
(a) and trace the computation of this Turing machine on the input 012. You may use all our
usual conventions for state diagrams of Turing machines (we do not include the node for the
reject state grej and any missing transitions in the state diagram have value (¢grej, O3, R);

b — R label means b — b, R ).

2. Deciders, Recognizers, Decidability, and Recognizability (15 points): For this ques-
tion, consider the alphabet ¥ = {0,1}.

"This means your solution will be evaluated not only on the correctness of your answers, but on your ability
to present your ideas clearly and logically. You should explain how you arrived at your conclusions, using
mathematically sound reasoning. Whether you use formal proof techniques or write a more informal argument
for why something is true, your answers should always be well-supported. Your goal should be to convince the
reader that your results and methods are sound.

8This means you will get full credit so long as your submission demonstrates honest effort to answer the
question. You will not be penalized for incorrect answers. To demonstrate your honest effort in answering the
question, we expect you to include your attempt to answer *each® part of the question. If you get stuck with
your attempt, you can still demonstrate your effort by explaining where you got stuck and what you did to try
to get unstuck.
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(a)

(Graded for correctness) Give an example of a finite, nonempty language over ¥ and two
different Turing machines that recognize it: one that is a decider and one that is not. A
complete solution will include a precise definition for your example language, along with
both a state diagram and an implementation-level description of each Turing machines,
along with a brief explanation of why each of them recognizes the language and why one is
a decider and there other is not.

(Graded for correctness) True or false: There is a Turing machine that is not a decider
that recognizes the empty set. A complete solution will include a witness Turing machine
(given by state diagram or implementation-level description or high-level description) and a
justification for why it’s not a decider and why it does not accept any strings, or a complete
and correct justification for why there is no such Turing machine.

(Graded for correctness) True or false: There is a Turing machine that is not a decider that
recognizes the set of all string X*. A complete solution will include a witness Turing machine
(given by state diagram or implementation-level description or high-level description) and
a justification for why it’s not a decider and why it accept each string over {0,1}, or a
complete and correct justification for why there is no such Turing machine.

3. Closure (15 points): Suppose M is a Turing machine over the alphabet {0,1}. Let sq, so, ...
be a list of all strings in {0,1}* in string (shortlex) order. We define a new Turing machine by
giving its high-level description as follows:

o«

Moo = “On input w :

1
2
3. Fork=1,2,...,n

4. Run the computation of M on sjws;,
5 If it accepts, accept.

6

If it rejects, go to the next iteration of the loop”

Recall the definitions we have: For languages L, Lo over the alphabet ¥ = {0, 1}, we have the
associated sets of strings

and

SUBSTRING(L;) = {w € X | there exist a,b € ¥* such that awb € L}

LyoLy={w e ¥ | w=uv for some strings v € Ly and v € Lo}

We say that self-set-wise concatenation of the set L is Ly o L.

Note: there was a bug in the version of this assignment that was first released.

(a)

(Graded for completeness) Prove that this Turing machine construction cannot be used
to prove that the class of decidable languages over {0,1} is closed under either of the
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above operations (SUBSTRING or self-set-wise concatenation). A complete answer will
give a counterexample or general description why the construction doesn’t work for both

operations.

(b) (Graded for correctness) Prove that this Turing machine construction cannot be used to
prove that the class of recognizable languages over {0, 1} is closed under the SUBSTRING
set operation. In particular, give a counterexample of a specific language L; and Turing
machine M; recognizing it where M,,.,, does not recognize SUBSTRING(L,).

(¢) (Graded for completeness) Define a new construction by slightly modifiying this one that
can be used to prove that the class of recognizable languages over {0, 1} is closed under
SUBSTRING. Justify that your construction works. The proof of correctness for the
closure claim can be structured like: “Let L; be a recognizable language over {0, 1} and
assume we are given a Turing machine M; so that L(M;) = Ly. Consider the new Turing
machine M,,,, defined above. We will show that L(M,e,) = SUBSTRING(Ly)... com-
plete the proof by proving subset inclusion in two directions, by tracing the relevant Turing
machine computations’

4. Computational problems (10 points): Recall the definitions of some example computa-
tional problems from class

Acceptance problem

...for DFA

.. for NFA
... for regular expressions
...for CFG

..for PDA

Appa
ANFA
ARpx
Acra
Appa

| B is a DFA that accepts input string w}

| B is a NFA that accepts input string w}

| R is a regular expression that generates input string w}

| G is a context-free grammar that generates input string w}
| B is a PDA that accepts input string w}

Language emptiness testing

...for DFA

.. for NFA
... for regular expressions
...for CFG

..for PDA

Epra
Enra
Erex
Ecra
Eppa

{(A) | Ais a DFA and L(A) = 0}

{(A) | Ais a NFA and L(A) = 0}

{(R) | R is a regular expression and L(R) = ()}
{{(G) | G is a context-free grammar and L(G) = 0}
{{A) | Ais a PDA and L(A) = 0}

Language equality testing

...for DFA

.. for NFA
... for regular expressions
...for CFG

..for PDA

EQpra
EQNFa
EQrex
EQcra
EQppa

{(A,B) | A and B are DFAs and L(A) = L(B)}

{(A,B) | A and B are NFAs and L(A) = L(B)}

{(R,R') | R and R’ are regular expressions and L(R) = L(R')}
{{G,G) | G and G’ are CFGs and L(G) = L(G")}

{(A,B) | A and B are PDAs and L(A) = L(B)}

(a) (Graded for completeness) Pick five of the computational problems above and give examples
(preferably different from the ones we talked about in class) of strings that are in each of
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the corresponding languages. Remember to use the notation (---) to denote the string
encoding of relevant objects. Fatension, not for credit: Explain why it’s hard to write a
specific string of Os and 1s and make a claim about membership in one of these sets.

(Graded for completeness) Computational problems can also be defined about Turing ma-
chines. Consider the two high-level descriptions of Turing machines below. Reverse-engineer
them to define the computational problem that is being recognized, where L(Mpr4) is the
language corresponding to this computational problem about DFA and L(Mry)y) is the lan-
guage corresponding to this computational problem about Turing machines. Hint: the
computational problem is not acceptance, language emptiness, or language equality (but is
related to one of them).

Let s1,82,... be a list of all strings in {0,1}* in string (shortlex) order. Consider the
following Turing machines

Mpra = “On input (D) where D is a DFA :
1 fori=1,23,...
2. Run D on s;
3. If it accepts, accept.

4. If it rejects, go to the next iteration of the loop”

and

Mry = “On input (T) where T is a Turing machine :
1. fori=1,2,3,...
2. Run T for i steps on each input sq, ss,...,s; in turn
3. If T has accepted any of these, accept.

4. Otherwise, go to the next iteration of the loop”
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HW5CSE105W24: Homework assignment 5 Due: March 14 at 5pm (no penalty late submission
until 8am next morning), via Gradescope

In this assignment, You will practice analyzing, designing, and working with Turing machines.
You will use general constructions and specific machines to explore the classes of recognizable
and decidable languages. You will explore various ways to encode machines as strings so that
computational problems can be recognized.

Resources: To review the topics for this assignment, see the class material from Weeks 7-10.
We will post frequently asked questions and our answers to them in a pinned Piazza post.

Reading and extra practice problems: Sipser Sections 4.2, 5.3, 5.1. Chapter 4 problems
4.9, 4.12. Chapter 5 exercises 5.4, 5.5, 5.6, 5.7. Chapter 5 problems 5.22, 5.23, 5.24, 5.28

For all HW assignments: Weekly homework may be done individually or in groups of up
to 3 students. You may switch HW partners for different HW assignments. Please ensure
your name(s) and PID(s) are clearly visible on the first page of your homework submission and
then upload the PDF to Gradescope. If working in a group, submit only one submission per
group: one partner uploads the submission through their Gradescope account and then adds the
other group member(s) to the Gradescope submission by selecting their name(s) in the “Add
Group Members” dialog box. You will need to re-add your group member(s) every time you
resubmit a new version of your assignment. FKach homework question will be graded either for
correctness (including clear and precise explanations and justifications of all answers) or fair
effort completeness. For “graded for correctness” questions: collaboration is allowed only with
CSE 105 students in your group; if your group has questions about a problem, you may ask in
drop-in help hours or post a private post (visible only to the Instructors) on Piazza. For “graded
for completeness” questions: collaboration is allowed with any CSE 105 students this quarter; if
your group has questions about a problem, you may ask in drop-in help hours or post a public
post on Piazza.

All submitted homework for this class must be typed. You can use a word processing editor if
you like (Microsoft Word, Open Office, Notepad, Vim, Google Docs, etc.) but you might find
it useful to take this opportunity to learn LaTeX. LaTeX is a markup language used widely in
computer science and mathematics. The homework assignments are typed using LaTeX and you
can use the source files as templates for typesetting your solutions. To generate state diagrams of
machines, we recommend using Flap.js or JELAP. Photographs of clearly hand-drawn diagrams
may also be used. We recommend that you submit early drafts to Gradescope so that in case of
any technical difficulties, at least some of your work is present. You may update your submission
as many times as you’d like up to the deadline.

Integrity reminders

e Problems should be solved together, not divided up between the partners. The homework
is designed to give you practice with the main concepts and techniques of the course, while
getting to know and learn from your classmates.
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e You may not collaborate on homework questions graded for correctness with anyone other
than your group members. You may ask questions about the homework in office hours (of
the instructor, TAs, and/or tutors) and on Piazza (as private notes viewable only to the
Instructors). You cannot use any online resources about the course content other than the
class material from this quarter — this is primarily to ensure that we all use consistent nota-
tion and definitions (aligned with the textbook) and also to protect the learning experience
you will have when the ‘aha’ moments of solving the problem authentically happen.

e Do not share written solutions or partial solutions for homework with other students in
the class who are not in your group. Doing so would dilute their learning experience and
detract from their success in the class.

You will submit this assignment via Gradescope (https://www.gradescope.com) in the assign-
ment called “hwhCSE105W24”.

Assigned questions
1. Computational problems (14 points): For each of the following statements, determine if it

is true or false. Clearly label your choice by starting your solution with True or False and then
provide a justification for your answer.

(a) (Graded for completeness) | True or False: The language
{(N1, Na) | N1, Ny are both NFAs over {0,1} and L(N;) C L(N»)}

is recognizable.
(b) (Graded for correctness) [ True or False: The language

{{(D) | D is a DFA over {0,1} and L(D) = L(0%)}
is decidable.

(¢) (Graded for correctness) True or False: The language

{(M) | M is a Turing machine and its start state equals its reject state}

is decidable.

9This means you will get full credit so long as your submission demonstrates honest effort to answer the
question. You will not be penalized for incorrect answers. To demonstrate your honest effort in answering the
question, we expect you to include your attempt to answer *each* part of the question. If you get stuck with
your attempt, you can still demonstrate your effort by explaining where you got stuck and what you did to try
to get unstuck.

10This means your solution will be evaluated not only on the correctness of your answers, but on your ability
to present your ideas clearly and logically. You should explain how you arrived at your conclusions, using
mathematically sound reasoning. Whether you use formal proof techniques or write a more informal argument
for why something is true, your answers should always be well-supported. Your goal should be to convince the
reader that your results and methods are sound.
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(d) (Graded for completeness) True or False: The language
{{M) | M is a Turing machine and L(M) = 0}

is decidable.
Challenge; not graded: what’s the difference between (c) and (d)?

2. What’s wrong with these reductions? (13 points): Suppose your friends are practicing
coming up with mapping reductions A <,, B and their witnessing functions f : ¥* — »*. For
each of the following attempts, determine if it is has error(s) or is correct. Do so by labelling
each attempt with all and only the labels below that apply, and justifying this labelling.

e FError Type 1: The given function can’t witness the claimed mapping reduction because
there exists an « € A such that f(x) € B.

o FError Type 2: The given function can’t witness the claimed mapping reduction because
there exists an = ¢ A such that f(x) € B.

e FError Type 3: The given function can’t witness the claimed mapping reduction because the
specified function is not computable.

e (Correct: The claimed mapping reduction is true and is witnessed by the given function.

Clearly present your answer by providing a brief (3-4 sentences or so) justification for whether
each of these labels applies to each example.

(a) (Graded for completeness) Ay < HALTry and

if z = (M, w) for a Turing machine M and string w
and w € L(M)

otherwise

Hint: There are two errors with this attempt.

(b) (Graded for correctness) {w | w € {0,1}*} <,,, {ww | w € {0,1}*} and f(z) = zx for each
z € {0,1}*.
(¢) (Graded for correctness) HALTry <,, EQry with

(start H , M) if x = (M, w) for a Turing machine M and string w
(start ﬁ, start ﬁ ) otherwise.

Where for each Turing machine M, we define

f(x)

M, = “On input y
1. Simulate M on w.
2. If it accepts, accept.
3. If it rejects, reject.”
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3. Using mapping reductions (14 points): Consider the following computational problems
we’ve discussed

Ary = {{(M,w) | M is a Turing machine, w is a string and M accepts w}
HALTry = {{(M,w) | M is a Turing machine, w is a string and M halts on w}
Ery = {(M) | M is a Turing machine and L(M) = 0}
EQry = {{(My, Ms) | My, M5 are both Turing machines and L(M;) = L(M,)}

and the new computational problem

Onery = {(M) | M is a Turing machine and M accepts exactly one string}

(a) (Graded for correctness) Give an example of a string that is an element of Onery; and a
string that is not an element Oner,, and briefly justify your choices.

(b) (Graded for completeness) Prove that Onerys is not decidable by showing that Ary <,
Oneryy.

(¢) (Graded for correctness) Give a different proof that Onery, is not decidable by showing that
HALTTM Sm OneTM.

(d) (Graded for completeness) Is Onerys recognizable? Justify your answer.

4. Examples of languages (9 points):

For each part of the question, use precise mathematical notation or English to define your
examples and then briefly justify why they work.

(a) (Graded for correctness) Two undecidable languages L; and Lo over the same alphabet
whose union L; U Ly is decidable, or write NONE if there is no such example (and explain
why).

(b) (Graded for correctness) A regular language L3 and an unrecognizable language L4 over the
same alphabet whose intersection L3 N Ly is unrecognizable, or write NONE if there is no
such example (and explain why).

(¢) (Graded for correctness) A co-recognizable language Lj; that is NP-complete, or write
NONE if there is no such example (and explain why). Recall the definition: A lan-
guage L over an alphabet X is called co-recognizable if its complement, defined as
Y*\ L ={zreX*|x¢ L}, is Turing-recognizable.
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ProjectCSE105W24: Project Due February 22 at 5pm (no penalty late submission until 8am
next day)

The CSE 105 project is designed for you to go deeper and extend your work on assignments and
to explore an application of your choosing. The project is an individual assignment and has two
tasks:

Task 1: Implementing the construction that converts NFA to DFA, and

Task 2: Illustrating the theorem that every regular language is decidable

What resources can you use? This project must be completed individually, without any help
from other people, including the course staff (other than logistics support if you get stuck with
screencast). You can use any of this quarter’s CSE 105 offering (notes, readings, class videos,
homework feedback). Tools for drawing state diagrams (like Flap.js and JFLAP) can be used to
help draw the diagrams in the project too. These resources should be more than enough. If you
are struggling to get started and want to look elsewhere online, you must acknowledge this by
listing and citing any resources you consult (even if you do not explicitly quote them), including
any large-language model style resources. Link directly to them and include the name of the
author / video creator, any search strings or prompts you used, and the reason you consulted
this reference.

The work you submit for the project needs to be your own. Again, you shouldn’t need to look
anywhere other than this quarter’s material and doing so may result in definitions or notations
that conflict with our norms in this class so think carefully before you go down this path.

If you get stuck on any part of the project, we encourage you to focus on communicating what
you think the question might mean, including bringing an example from class or homework you
think might be relevant, and include any submission any aspect where you're unsure. Clear
communication about these theoretical ideas and their applications ia one of the main goals of
the project.

Submitting the project You will submit a PDF plus a video file for the first task and a PDF
for the second task. All file submissions will be in Gradescope.
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Task 1: Implementing a construction Nondeterminism is a useful theoretical concept be-
cause it can make designs simpler and more modular. However, our actual devices are deter-
ministic. In this part of the project, you’ll choose a language that can be represented using
nondeterminism in some interesting way, then illustrate the construction that converts NFA to
DFA for this example.

Specifically:

1. Choose an alphabet Y for this entire first task of the project.

2. Write a program in Java, Python, JavaScript, C++ , or another programming language
of your choosing that takes as input a representation of an NFA over this alphabet and
outputs a representation of a DFA over this alphabet that recognizes the same language.
You get to choose the way NFA and DFA are represented, so long as it is general enough to
represent any NFA and any DFA over this alphabet. For simplicity: you can restrict your
attention to NFA **without spontaneous moves** (in other words, where the transition
function has domain @ x ¥ when @ is the set of states of the NFA). Informally, this means
that the nondeterminism is coming from there being zero, one, or more arrows coming out
of each state for each character in the alphabet and there are no arrows with ¢ labels.

If you would like, you may use aids such as co-pilot or ChatGPT to help you write this
program. However, you should test the code that is produced and be able to explain what
it is doing. As a header in your code file, include a comment block describing any resources
that were used to help generate your code.

Whenever your program is run, it should display a representation of the input NFA and of
the output DFA of the run.

3. To demonstrate your program, design a NFA over ¥ with three states and with no sponta-
neous moves where the language of the NFA is neither () nor ¥* and draw its state diagram.
Your NFA should use nondeterminism in some way. In other words, the state diagram you
draw can’t already be the state diagram of a DFA. Run your program with the NFA you
just designed to output a representation of an equivalent DFA and demonstrate its design
and the test case on video.

Checklist for submission
For this task, you will submit a PDF plus a video file.

The PDF should include:

e Clear specification of alphabet and state diagram of chosen three-state NFA.

e Documentation for program converting NFA to DFA: include a description of how NFA
and DFA are represented in the program and give instructions for running it.
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e Printout of code for program converting NFA to DFA.

e Screen shots of demonstration of running your program on your chosen NFA, including the
representation of the output DFA.

e Solution is typed or clearly hand drawn with precise language and notation for all terms.

Presenting your reasoning and demonstrating it via screenshare are important skills that also
show us a lot of your learning. Getting practice with this style of presentation is a good thing
for you to learn in general and a rich way for us to assess your skills. To demonstrate your work,
you will create a 3-5 minute screencast video with the following components:

e Start with your face and your student ID for a few seconds at the beginning, and introduce
yourself audibly while on screen. You don’t have to be on camera for the rest of the video,
though it’s fine if you are. We are looking for a brief confirmation that it’s you creating
the video and doing the work you submitted.

e Present the NFA you will be working with. Your video should include a clear and precise
explanation of why the language of this NFA is not empty and also not the set of all strings
over ..

e Show on the screen and explain the code for your program, including the software design
choices you made (e.g. which data structures are you using, etc.) and any resources you
used. The video should clearly describe which programming language was chosen for the
implementation and gives the reasons why.

e Show on the screen and explain the representation of the NFA that you will input to the
program.

e Demonstrate running your code on your example input. The video should include screen-
casts of running the code live. Explain why the output of your program is what you would
expect, by connecting the output of the program to a DFA and discussing which strings
are accepted / rejected by this DFA.

e Logistics: video needs to load correctly, be between 3 and 5 minutes, show your face and
ID, and you introduce yourself audibly while on screen.

Note: Clarity and brevity are both important aspects of your video. In previous years, we’ve
seen students speed up their videos to get below the 5 minute upper bound. This is ok so long
as it doesn’t compromise clarity.
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Task 2: Illustrating a theorem In this part of the project, you’ll choose a pattern in an
application you care about, define it precisely, build a DFA that recognizes it, and then build
the related Turing machine that proves that the language encoding this pattern is decidable.

First, pick one application for your example. Here are some ideas to get you started - but you
can choose to go in a different direction.

e Data validation for input in text files (e.g. emails with specific domains, dates in specific
formats, PIDs in a class list, etc.)

e Finding ASCII codes for punctuation in a binary file.

e The CDC recommended procedure for hand washing (Refer to the guidelines from the CDC
here https://www.cde.gov/handwashing /index.html in your explanation. You might find
the first example in chapter 1 about automatic door controllers helpful when starting your
design.)

e See more ideas here: https://theory-cs.github.io/files/practical-applications-of-theory-of-
computation.pdf

Then:

1. In a paragraph or so, give the context for your chosen application and why you chose it.

2. Specify the alphabet for your example and write a precise (mathematical and/or English)
description of a set of strings over this alphabet that is relevant to this application, and
include a sentence or so justifying why this set is important and relevant.

3. Give one example of a string over this alphabet in this set and a string over this (same)
alphabet not in this set, and explain why you chose these example strings.

4. Design a DFA that recognizes this language. Clearly draw and label the state diagram of
this DFA and briefly justify why your design works by describing the role of each state of
the DFA and relating it to a plain English description of the language you picked.

5. Use the construction in the proof that all regular languages are decidable (informally de-
scribed in Theorem 4.1 in the book) to build a Turing machine that simulates your DFA.
Hint: your Turing machine will have exactly two more states than your DFA. Draw the
state diagram of your Turing machine.

6. For one of the strings from step 4., draw a representation of the computation of your Turing
machine on this string. Remember that to describe the computation of a Turing machine,
we need to include the contents of the tape, the state of the machine, and the location
of the read/write head at each step in the computation. In class we've drawn pictures to
represent the configuration of the machine at each step in a computation. You may do so
or you may choose to describe these configurations in words.
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Checklist for submission

e Solution typed or clearly hand-written/drawn with precise language and notation for all
terms and complete, correct, and clear justification.

e Each of the six steps is complete and included in the PDF, with precise language and
notation for all terms and complete, correct, and clear justification.

Your video: You may produce screencasts with any software you choose. One option is to
record yourself with Zoom; a tutorial on how to use Zoom to record a screencast (courtesy of
Prof. Joe Politz) is here:

https://drive.google.com/open?id=1KROMAQuTCk40zwrEFot1YSJJQdcG_GUU.
The video that was produced from that recording session in Zoom is here:
https://drive.google.com/open?id=1MxJN6CQcXqIb0ekDYMx jh7mTt1TyRVM1

Please send an email to the instructors (minnes@ucsd.edu) if you have concerns about the video
/ screencast components of this project or cannot complete projects in this style for some reason.
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