CSE 105 Discussion —
Week 4

PUMPING LEMMA

Do non-regular languages exist?

Yes! Why?

Q1: What does it mean for a language to be regular? (might have multiple right answers)

A. Finite
B. Can be recognized by an NFA/DFA
C. Can be described by a Regex

Q2: What is the cardinality of the set of all Regex over some alphabet?

A. Finite
B. Countable
C. Uncountable

Do non-regular languages exist?

Yes! Why?

Q1: What does it mean for a language to be regular? (might have multiple right answers)

A. Finite
B.
C.

Q2: What is the cardinality of the set of all Regex over some alphabet?

A. Finite All languages
B. Countable

C. Uncountable -

Now, the set of all languages is uncountable since it is the powerset of an infinite set.

Also note that the set of languages NFA/DFA/Regex can describe are the same!

Intuitions about non-regular langs

e 0O*1*

e {1 0™m | n, m>1}
e {0, 00, 0000, 00000000, ...}
e {0,000, 00000, ...}

e {0"n1"m | n>m>0}

Intuitions about non-regular langs

e O0*1*regular

e {1*n0"m | n,m>1}regular
e {0, 00,0000, 000000000, ...} non-regular
e {0,000, 00000, ...} regular

e {0"n 1”m | n>m >0} non-regular

Pumping Lemma

If Ais a regular language then there is a number p (the pumping length) where if s is any stringin A of
length at least p then s may be divided into three pieces, s = xyz such that

-ly| >0, and // The loop is nonempty
-Foreachi > 0, xyiz € A //Pumping the loop any # of times creates other stringsin A

lxyl <p // The loop appears in the first p characters

For regular languages we can set p > # of statesin DFA recognizing language

For finite languages we can set p > length of longest string in language

Pumping Lemma T/F

If Ais a regular language then there is a number p (the pumping length) where if s is any string in A of
length at least p then s may be divided into three pieces, s = xyz such that

-ly| >0, and // The loop is nonempty

-Foreachi > 0, xyiz € A //Pumping the loop any # of times creates other stringsin A
lxyl <p // The loop appears in the first p characters

Are the following statements True or False?

-L is regular = L has a pumping length

Pumping Lemma T/F

If Ais a regular language then there is a number p (the pumping length) where if s is any string in A of
length at least p then s may be divided into three pieces, s = xyz such that

-ly| >0, and // The loop is nonempty

-Foreachi > 0, xyiz € A //Pumping the loop any # of times creates other stringsin A
lxyl <p // The loop appears in the first p characters

Are the following statements True or False?

-L isregular — L has a pumping length True, this is what the Pumping Lemma tells us

-L is not regular = L does not have a pumping length

Pumping Lemma T/F

If Ais a regular language then there is a number p (the pumping length) where if s is any string in A of
length at least p then s may be divided into three pieces, s = xyz such that

-ly| >0, and // The loop is nonempty

-Foreachi > 0, xyiz € A //Pumping the loop any # of times creates other stringsin A

lxy| <p // The loop appears in the first p characters

Are the following statements True or False?

-L is regular = L has a pumping length True, this is what the Pumping Lemma tells us

-L is not regular = L does not have a pumping length False, this is the converse of Pumping Lemma

-L has a pumping length — L is regular

Pumping Lemma T/F

If Ais a regular language then there is a number p (the pumping length) where if s is any stringin A of
length at least p then s may be divided into three pieces, s = xyz such that

-ly| > 0, and // The loop is nonempty

-For eachi > 0, xyiz € A //Pumping the loop any # of times creates other stringsin A

lxy| <p // The loop appears in the first p characters

Are the following statements True or False?

-Lisregular = L has a pumping length True, this is what the Pumping Lemma tells us

-L is not regular = L does not have a pumping length False, this is the converse of Pumping Lemma
-L has a pumping length — L is regular ~ False, this is the inverse of Pumping Lemma

-L does not have a pumping length — L is not regular

Pumping Lemma T/F

If Ais a regular language then there is a number p (the pumping length) where if s is any stringin A of
length at least p then s may be divided into three pieces, s = xyz such that

-ly| > 0, and // The loop is nonempty

-For eachi > 0, xyiz € A //Pumping the loop any # of times creates other stringsin A

lxy| <p // The loop appears in the first p characters

Are the following statements True or False?

-Lisregular = L has a pumping length True, this is what the Pumping Lemma tells us

-L is not regular = L does not have a pumping length False, this is the converse of Pumping Lemma
-L has a pumping length — L is regular False, this is the inverse of Pumping Lemma

-L does not have a pumping length — L is not regular True, this is the contrapositive of the Pumping Lemma
- This is the statement we use to prove a language is not regular

Proof Sketch

e Suppose a language is regular, then it must have a DFA that recognizes it.

e DFA has finite amount of states, let’s say k.

e Letsbeastring of length n 2 k.

e Suppose s is accepted, that means after n transitions, we land in an accept state.
e Though the journey to accept state, we’ve visited n+1 states including the start.

e Now, n+1 >k, so at least one state has been visited twice.

e Let'ssaythewevisitedqg 1,9 2q_i, ... q_i, ... with g_i visited at least two times.

e This shows there is a cycle. We can revisit the cycle as many times as we want!

@@~ @
D

Pumping Lemma — Formal Logic

If A is a regular language then if s is any stringin A of
length at least p then s may be divided into three pieces, s = xyz such that

-ly| > 0, and // The loop is nonempty
-Foreachi > 0,xy'z€ A //Pumping the loop any # of times creates other strings in A
lxy| <p // The loop appears in the first p characters

-If Ais a regular language then...
seA|s|=p->3xy,z (s =xyzAly| >0Alxy| <pA(VieNxy'ze A)))

-Contrapositive: Negate both sides and swap them

fVp(A3s€A|s| >2pAVx, Y,z ((s=xyzAly| >0A|xy| <p) - (Ji€ Nxy'z ¢ A)))
- ..then A is a nonregular language
- If we can show that all values of p are not pumping lengths for A then we have shown that 4 is nonregular

Pumping Lemma — Strategy

In proofs of nonregularity of language A using the pumping lemma our goal is to show
Vp(As€Als| =2 pAVx,y,z ((s=xyzAlyl>0Alxyl <p)-> (Ji€eNxy'z¢ A)))

-Forany p
-There is a string s such that
-For any viable split of the string into x, y, and z

-We can choose some # of repetitions of y to get a string not in the language

Pumping Lemma — Strategy

In proofs of nonregularity of language A using the pumping lemma our goal is to show
Vp(As€Als| =2 pAVx,y,z ((s=xyzAlyl>0Alxyl <p)-> (JieNxy'z ¢ A)))

-Forany p
- Consider arbitraryp

-There is a string s such that
- Choose a string s in terms of p (creative part)

-For any viable split of the string into x, y, and z
- Definex, y, z according to PL conditions [y| > 0 A |xy| < p

-We can choose some # of repetitions of y to get a string not in the language
- Choose i such that xy‘z is not in the language (other creative part)

Pumping Lemma — Example

-Consider the language PAL = {w € {0,1}*|w = w®}, i.e. the set of all palindromes over {0,1}
-Show that PAL is nonregular using the pumping lemma
-WTS

Vp(3s € PAL |s| 2 p AVx,y,z ((s=xyzAly|>0A|xy|<p) - (JieN xy'z & PAL)))
Consider arbitrary pumping length p. WTS there is a valid string in PAL that can’t be pumped.

Which string should we choose?
A. 111000111

B.10P1

C.0P10P

D.0P1?

Pumping Lemma — Example

-Consider the language PAL = {w € {0,1}'|w = w®}, i.e. the set of all palindromes over {0,1}
-WTS

Vp(3s € PAL |s| 2 pAVx,y,z ((s =xyzAly| > 0Alxy| <p) > (Ii€ENxy'z ¢ PAL)))
Consider arbitrary pumping length p. WTS there is a valid string in PAL that can’t be pumped.
Consider string s = 0P10P € PAL, where |s| > p, as desired.
Let s = xyz where x = 0%, y = 0/,z = 0'10P such that j > 0, and k +j + | = p.
WTS there is a value i such that xy‘z & PAL
Consider i = 0. Then xy'z = xz = 0¥0'10P. Since j>Othenk + 1 < k +j + L.
Thenk + [<p,so 0%0'10” has an unequal number of leading and ending 0s, and therefore is not palindromic.

Therefore, xy°z & PAL and p is not a pumping length for PAL. Thus PAL has no pumping length and is
nonregular.

Pushdown Automata (PDA)

e Whatis the source of memory of an NFA?

o The stateitisin

o That’sit finite top
e Now add stack control 5 A
© we now have two sources of memory @ S
state
a
input tape
stack

PDA Formal Description

DEFINITION 2.13

A pushdown automaton is a 6-tuple (Q,%, T, 4, qo, F'), where Q, X,
I', and F are all finite sets, and

1. Q) is the set of states,

. . is the input alphabet,

. T is the stack alphabet,

. 0:Q x X xT.—P(Q x I,) is the transition function,
. o € Q is the start state, and

. F' C Q is the set of accept states.

A Vi W N

Compare And Contrast

DEFINITION 2.13
A pushdown automaton is a 6-tuple (Q, %, T, 6, qo, F'), where Q, 3, Non-deterministic!
I', and F are all finite sets, and

1. Q is the set of states,

2. ¥ is the input alphabet,

3. T is the stack alphabet,

4.6: Q x X, x I.—P(Q x I) is the transition function,
5. g0 € Q is the start state, and

dppal(state, char, pop) = {(new_state, push), ...}

6. F' C @ is the set of accept states. DEFINITION 1.37
A nondeterministic finite automaton is a 5-tuple (Q, %, 9, qo, F),
where

1. Q is a finite set of states,

2. 3 is a finite alphabet,

Inra(state, character) = {new_state, ...} 3. 6: Q X X.—>P(Q) is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

PDA Transition Practice

flapjs link

What are the following?: e$oe

0(q1,0,e) =1(q1,0),(q2,8)} cee
0(q2,1,1)={(q2,¢)}
5((]27076) :(b

0,0—¢e 1,1—¢

https://flapjs.web.app/#PDAq0:710:966:40:0:1;q1:710:1348:40:0:0;q2:1024:1576:40:0:0;q3:708:1908:40:0:2;0:1:%CE%B5%CE%B5$0R:4:0:2:16~1:1:0%CE%B500R:5:-16:-26:-17~1:1:1%CE%B510R:-1:-16:-14:-1~1:2:%CE%B5%CE%B5%CE%B50R:5:33:0:29~1:2:0%CE%B5%CE%B50R:5:-24:-2:-10~1:2:1%CE%B5%CE%B50R:5:2:1:-1~2:3:%CE%B5$%CE%B50R:5:0:0:31~2:2:00%CE%B50R:10:14:29:18~2:2:11%CE%B50R:6:-15:4:14~

Convert Languages to PDA

{a1brasbs . .. a,b, | count(aias ... a,) = count(bibs...b,) A bibs...b, € L(0*1%)}

count(s) = number of 1sin s }

e Need to keep track of 1s in even positions and make sure
they match the number of 1s in odd positions
e All 1s in odd positions need to come after Os

® Empty string is allowed

Sample machine

https://flapjs.web.app/#PDAq0:732:1126:40:0:0;q1:664:1568:40:0:0;q2:698:1910:40:0:0;q3:736:2196:40:0:0;q4:730:846:40:0:1;q5:930:1884:40:0:2;0:1:0%CE%B5%CE%B50R:5:20:-2:5~0:1:1%CE%B510R:5:-19:-5:-25~0:5:%CE%B5$%CE%B50R:5:22:5:12~1:0:0%CE%B5%CE%B50R:5:0:-30:2~1:2:11%CE%B50R:5:0:-1:-29~2:3:0%CE%B5%CE%B50R:5:-25:0:29~2:3:1%CE%B510R:4:19:5:20~2:5:%CE%B5$%CE%B50R:5:0:16:-20~3:2:11%CE%B50R:5:0:-30:-4~4:0:%CE%B5%CE%B5$0R:5:0:1:16~

Convert Languages to PDA

{a1brasbs . .. a,b, | count(aias . .. a,) = count(bibs...b,) A biby...b, € L(0*1%)}

0,e—¢

https://flapjs.web.app/#PDAq0:732:1126:40:0:0;q1:664:1568:40:0:0;q2:698:1910:40:0:0;q3:736:2196:40:0:0;q4:730:846:40:0:1;q5:930:1884:40:0:2;0:1:0%CE%B5%CE%B50R:5:20:-2:5~0:1:1%CE%B510R:5:-19:-5:-25~0:5:%CE%B5$%CE%B50R:5:22:5:12~1:0:0%CE%B5%CE%B50R:5:0:-30:2~1:2:11%CE%B50R:5:0:-1:-29~2:3:0%CE%B5%CE%B50R:5:-25:0:29~2:3:1%CE%B510R:4:19:5:20~2:5:%CE%B5$%CE%B50R:5:0:16:-20~3:2:11%CE%B50R:5:0:-30:-4~4:0:%CE%B5%CE%B5$0R:5:0:1:16~

Decipher PDA Language

b,a—¢€ C,E—E

Decipher PDA Language

b,a—¢€ C,E—E

