
regular-expressions

Week3 wednesday

Consider the state diagram of an NFA over {a, b}:

The language recognized by this NFA is

The state diagram of a DFA recognizing this same language is:

Suppose A is a language over an alphabet Σ. Claim: if there is a NFA N such that L(N) = A then there
is a DFA M such that L(M) = A.

Proof idea: States in M are “macro-states” – collections of states from N – that represent the set of
possible states a computation of N might be in.

Formal construction: Let N = (Q,Σ, δ, q0, F). Define

M = (P(Q),Σ, δ′, q′, {X ⊆ Q | X ∩ F ̸= ∅})

where q′ = {q ∈ Q | q = q0 or is accessible from q0 by spontaneous moves in N} and

δ′((X, x)) = {q ∈ Q | q ∈ δ((r, x)) for some r ∈ X or is accessible from such an r by spontaneous moves in N}

CC BY-NC-SA 2.0 Version August 7, 2024 (1)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Consider the state diagram of an NFA over {0, 1}. Use the “macro-state” construction to find an equivalent
DFA.

Prune this diagram to get an equivalent DFA with only the “macro-states” reachable from the start state.

Suppose A is a language over an alphabet Σ. Claim: if there is a regular expression R such that L(R) = A,
then there is a NFA, let’s call it N , such that L(N) = A.

Structural induction: Regular expression is built from basis regular expressions using inductive steps
(union, concatenation, Kleene star symbols). Use constructions to mirror these in NFAs.

Application: A state diagram for a NFA over {a, b} that recognizes L(a∗(ab)∗):

CC BY-NC-SA 2.0 Version August 7, 2024 (2)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Suppose A is a language over an alphabet Σ. Claim: if there is a DFA M such that L(M) = A, then there
is a regular expression, let’s call it R, such that L(R) = A.

Proof idea: Trace all possible paths from start state to accept state. Express labels of these paths as
regular expressions, and union them all.

1. Add new start state with ε arrow to old start state.

2. Add new accept state with ε arrow from old accept states. Make old accept states non-accept.

3. Remove one (of the old) states at a time: modify regular expressions on arrows that went through
removed state to restore language recognized by machine.

Application: Find a regular expression describing the language recognized by the DFA with state diagram

CC BY-NC-SA 2.0 Version August 7, 2024 (3)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Conclusion: For each language L,

There is a DFA that recognizes L ∃M (M is a DFA and L(M) = A)
if and only if

There is a NFA that recognizes L ∃N (N is a NFA and L(N) = A)
if and only if

There is a regular expression that describes L ∃R (R is a regular expression and L(R) = A)

A language is called regular when any (hence all) of the above three conditions are met.

Week2 monday

Review: Formal definition of DFA: M = (Q,Σ, δ, q0, F)

• Finite set of states Q

• Alphabet Σ

• Transition function δ

• Start state q0

• Accept (final) states F

In the state diagram of M , how many outgoing arrows are there from each state?

M = ({q, r, s}, {a, b}, δ, q, {s}) where δ is (rows labelled by states and columns labelled by symbols):

δ a b
q r q
r r s
s s s

The state diagram for M is

Give two examples of strings that are accepted by M and two examples of strings that are rejected by M :

Add “labels” for states in the state diagram, e.g. “have not seen any of desired pattern yet” or “sink state”.

CC BY-NC-SA 2.0 Version August 7, 2024 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/

We can use the analysis of the roles of the states in the state diagram to describe the language recognized
by the DFA.

L(M) =

A regular expression describing L(M) is

Let the alphabet be Σ1 = {0, 1}.

A state diagram for a DFA that recognizes {w | w contains at most two 1’s} is

A state diagram for a DFA that recognizes {w | w contains more than two 1’s} is

CC BY-NC-SA 2.0 Version August 7, 2024 (5)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Extra example: A state diagram for DFA recognizing

{w | w is a string over {0, 1} whose length is not a multiple of 3}

Let n be an arbitrary positive integer. What is a formal definition for a DFA recognizing

{w | w is a string over {0, 1} whose length is not a multiple of n}?

Week2 wednesday

Suppose A is a language over an alphabet Σ. By definition, this means A is a subset of Σ∗. Claim: if there
is a DFA M such that L(M) = A then there is another DFA, let’s call it M ′, such that L(M ′) = A, the
complement of A, defined as {w ∈ Σ∗ | w /∈ A}.

Proof idea:

Proof:

A useful (optional) bit of terminology: the iterated transition function of a DFA M = (Q,Σ, δ, q0, F) is
defined recursively by

δ∗((q, w)) =


q if q ∈ Q,w = ε

δ((q, a)) if q ∈ Q, w = a ∈ Σ

δ((δ∗(q, u), a)) if q ∈ Q, w = ua where u ∈ Σ∗ and a ∈ Σ

Using this terminology, M accepts a string w over Σ if and only if δ∗((q0, w)) ∈ F .

CC BY-NC-SA 2.0 Version August 7, 2024 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Fix Σ = {a, b}. A state diagram for a DFA that recognizes {w | w has ab as a substring and is of even length}:

Suppose A1, A2 are languages over an alphabet Σ. Claim: if there is a DFA M1 such that L(M1) = A1 and
DFA M2 such that L(M2) = A2, then there is another DFA, let’s call it M , such that L(M) = A1 ∩ A2.

Proof idea:

Formal construction:

Application: When A1 = {w | w has ab as a substring} and A2 = {w | w is of even length}.

CC BY-NC-SA 2.0 Version August 7, 2024 (7)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Suppose A1, A2 are languages over an alphabet Σ. Claim: if there is a DFA M1 such that L(M1) = A1

and DFA M2 such that L(M2) = A2, then there is another DFA, let’s call it M , such that L(M) = A1∪A2.
Sipser Theorem 1.25, page 45

Proof idea:

Formal construction:

Application: A state diagram for a DFA that recognizes {w | w has ab as a substring or is of even length}:

Week1 wednesday

Our motivation in studying sets of strings is that they can be used to encode problems. To calibrate how
difficult a problem is to solve, we describe how complicated the set of strings that encodes it is. How do we
define sets of strings?

How would you describe the language that has no elements at all?

How would you describe the language that has all strings over {0, 1} as its elements?

CC BY-NC-SA 2.0 Version August 7, 2024 (8)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Definition 1.52: A regular expression over alphabet Σ is a syntactic expression that can describe a
language over Σ. The collection of all regular expressions is defined recursively:

Basis steps of recursive definition

a is a regular expression, for a ∈ Σ

ε is a regular expression

∅ is a regular expression

Recursive steps of recursive definition

(R1 ∪R2) is a regular expression when R1, R2 are regular expressions

(R1 ◦R2) is a regular expression when R1, R2 are regular expressions

(R∗
1) is a regular expression when R1 is a regular expression

The semantics (or meaning) of the syntactic regular expression is the language described by the regular
expression. The function that assigns a language to a regular expression over Σ is defined recursively,
using familiar set operations:

Basis steps of recursive definition

The language described by a, for a ∈ Σ, is {a} and we write L(a) = {a}
The language described by ε is {ε} and we write L(ε) = {ε}
The language described by ∅ is {} and we write L(∅) = ∅.

Recursive steps of recursive definition

When R1, R2 are regular expressions, the language described by the regular expression
(R1 ∪R2) is the union of the languages described by R1 and R2, and we write

L((R1 ∪R2)) = L(R1) ∪ L(R2) = {w | w ∈ L(R1) ∨ w ∈ L(R2)}

When R1, R2 are regular expressions, the language described by the regular expression
(R1 ◦R2) is the concatenation of the languages described by R1 and R2, and we write

L((R1 ◦R2)) = L(R1) ◦ L(R2) = {uv | u ∈ L(R1) ∧ v ∈ L(R2)}

When R1 is a regular expression, the language described by the regular expression (R∗
1) is

the Kleene star of the language described by R1 and we write

L((R∗
1)) = (L(R1))

∗ = {w1 · · ·wk | k ≥ 0 and each wi ∈ L(R1)}

For the following examples assume the alphabet is Σ1 = {0, 1}:

The language described by the regular expression 0 is L(0) = {0}

The language described by the regular expression 1 is L(1) = {1}

The language described by the regular expression ε is L(ε) = {ε}

CC BY-NC-SA 2.0 Version August 7, 2024 (9)

https://creativecommons.org/licenses/by-nc-sa/2.0/

The language described by the regular expression ∅ is L(∅) = ∅

The language described by the regular expression ((0 ∪ 1) ∪ 1) is L(((0 ∪ 1) ∪ 1)) =

The language described by the regular expression 1+ is L((1)+) =

The language described by the regular expression Σ∗
11 is L(Σ∗

11) =

The language described by the regular expression (Σ1Σ1Σ1Σ1Σ1)
∗ is L((Σ1Σ1Σ1Σ1Σ1)

∗) =

A regular expression that describes the language {00, 01, 10, 11} is

A regular expression that describes the language {0n1 | n is even} is

Shorthand and conventions

Assuming Σ is the alphabet, we use the following conventions
Σ regular expression describing language consisting of all strings of length 1 over Σ
∗ then ◦ then ∪ precedence order, unless parentheses are used to change it
R1R2 shorthand for R1 ◦R2 (concatenation symbol is implicit)
R+ shorthand for R∗ ◦R
Rk shorthand for R concatenated with itself k times, where k is a natural number
Pages 63 - 65

CC BY-NC-SA 2.0 Version August 7, 2024 (10)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Caution: many programming languages that support regular expressions build in functionality
that is more powerful than the “pure” definition of regular expressions given here.

Regular expressions are everywhere (once you start looking for them).

Software tools and languages often have built-in support for regular expressions to describe patterns that
we want to match (e.g. Excel/ Sheets, grep, Perl, python, Java, Ruby).

Under the hood, the first phase of compilers is to transform the strings we write in code to tokens
(keywords, operators, identifiers, literals). Compilers use regular expressions to describe the sets of strings
that can be used for each token type.

Next time: we’ll start to see how to build machines that decide whether strings match the pattern described
by a regular expression.

Extra examples for practice:

Which regular expression(s) below describe a language that includes the string a as an element?

a∗b∗

a(ba)∗b

a∗ ∪ b∗

(aaa)∗

(ε ∪ a)b

CC BY-NC-SA 2.0 Version August 7, 2024 (11)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week1 friday

Review: Determine whether each statement below about regular expressions over the alphabet {a, b, c} is
true or false:

True or False: a ∈ L((a ∪ b) ∪ c)

True or False: ab ∈ L((a ∪ b)∗)

True or False: ba ∈ L(a∗b∗)

True or False: ε ∈ L(a ∪ b ∪ c)

True or False: ε ∈ L((a ∪ b)∗)

True or False: ε ∈ L(a∗b∗)

From the pre-class reading, pages 34-36: A deterministic finite automaton (DFA) is specified by
M = (Q,Σ, δ, q0, F). This 5-tuple is called the formal definition of the DFA. The DFA can also be
represented by its state diagram: with nodes for the state, labelled edges specifying the transition function,
and decorations on nodes denoting the start and accept states.

Finite set of states Q can be labelled by any collection of distinct names. Often we use default
state labels q0, q1, . . .

The alphabet Σ determines the possible inputs to the automaton. Each input to the automaton
is a string over Σ, and the automaton “processes” the input one symbol (or character) at a time.

The transition function δ gives the next state of the DFA based on the current state of the
machine and on the next input symbol.

The start state q0 is an element of Q. Each computation of the machine starts at the start state.

The accept (final) states F form a subset of the states of the DFA, F ⊆ Q. These states are
used to flag if the machine accepts or rejects an input string.

The computation of a machine on an input string is a sequence of states in the machine, starting
with the start state, determined by transitions of the machine as it reads successive input
symbols.

The DFA M accepts the given input string exactly when the computation of M on the input
string ends in an accept state. M rejects the given input string exactly when the computation
of M on the input string ends in a nonaccept state, that is, a state that is not in F .

CC BY-NC-SA 2.0 Version August 7, 2024 (12)

https://creativecommons.org/licenses/by-nc-sa/2.0/

The language of M , L(M), is defined as the set of all strings that are each accepted by the
machine M . Each string that is rejected by M is not in L(M). The language of M is also called
the language recognized by M .

What is finite about all deterministic finite automata? (Select all that apply)

□ The size of the machine (number of states, number of arrows)

□ The number of strings that are accepted by the machine

□ The length of each computation of the machine

The formal definition of this DFA is

Classify each string a, aa, ab, ba, bb, ε as accepted by the DFA or rejected by the DFA.

Why are these the only two options?

The language recognized by this DFA is

CC BY-NC-SA 2.0 Version August 7, 2024 (13)

https://creativecommons.org/licenses/by-nc-sa/2.0/

The language recognized by this DFA is

The language recognized by this DFA is

CC BY-NC-SA 2.0 Version August 7, 2024 (14)

https://creativecommons.org/licenses/by-nc-sa/2.0/

