
reduction

Week9 wednesday

Recall: A ismapping reducible to B, written A ≤m B, means there is a computable function f : Σ∗ → Σ∗

such that for all strings x in Σ∗,

x ∈ A if and only if f(x) ∈ B.

True or False: ATM ≤m HALTTM

True or False: HALTTM ≤m ATM .

Theorem (Sipser 5.28): If A ≤m B and B is recognizable, then A is recognizable.

Proof:

Corollary: If A ≤m B and A is unrecognizable, then B is unrecognizable.
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Strategy:

(i) To prove that a recognizable language R is undecidable, prove that ATM ≤m R.

(ii) To prove that a co-recognizable language U is undecidable, prove that ATM ≤m U , i.e. that ATM ≤m U .

ETM = {⟨M⟩ | M is a Turing machine and L(M) = ∅}

Example string in ETM is . Example string not in ETM is .

ETM is decidable / undecidable and recognizable / unrecognizable .

ETM is decidable / undecidable and recognizable / unrecognizable .

Claim: ≤m ETM .

Proof: Need computable function F : Σ∗ → Σ∗ such that x ∈ ATM iff F (x) /∈ ETM . Define

F = “ On input x,

1. Type-check whether x = ⟨M,w⟩ for some TM M and string w. If so, move to step 2; if
not, output

2. Construct the following machine M ′
x:

3. Output ⟨M ′
x⟩.”

Verifying correctness:

Input string Output string
⟨M,w⟩ where w ∈ L(M)

⟨M,w⟩ where w /∈ L(M)

x not encoding any pair of TM and string
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Week9 friday

Recall: A ismapping reducible to B, written A ≤m B, means there is a computable function f : Σ∗ → Σ∗

such that for all strings x in Σ∗,

x ∈ A if and only if f(x) ∈ B.

EQTM = {⟨M,M ′⟩ | M and M ′ are both Turing machines and L(M) = L(M ′)}

Example string in EQTM is . Example string not in EQTM is .

EQTM is decidable / undecidable and recognizable / unrecognizable .

EQTM is decidable / undecidable and recognizable / unrecognizable .

To prove, show that ≤m EQTM and that ≤m EQTM .

Verifying correctness:

Input string Output string
⟨M,w⟩ where M halts on w

⟨M,w⟩ where M loops on w

x not encoding any pair of TM and string
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In practice, computers (and Turing machines) don’t have infinite tape, and we can’t afford to wait un-
boundedly long for an answer. “Decidable” isn’t good enough - we want “Efficiently decidable”.

For a given algorithm working on a given input, how long do we need to wait for an answer? How does the
running time depend on the input in the worst-case? average-case? We expect to have to spend more time
on computations with larger inputs.

A language is recognizable if

A language is decidable if

A language is efficiently decidable if

A function is computable if

A function is efficiently computable if

Definition (Sipser 7.1): For M a deterministic decider, its running time is the function f : N → N given
by

f(n) = max number of steps M takes before halting, over all inputs of length n

Definition (Sipser 7.7): For each function t(n), the time complexity class TIME(t(n)), is defined by

TIME(t(n)) = {L | L is decidable by a Turing machine with running time in O(t(n))}

An example of an element of TIME(1) is

An example of an element of TIME(n) is

Note: TIME(1) ⊆ TIME(n) ⊆ TIME(n2)

Definition (Sipser 7.12) : P is the class of languages that are decidable in polynomial time on a deterministic
1-tape Turing machine

P =
⋃
k

TIME(nk)

Compare to exponential time: brute-force search.

Theorem (Sipser 7.8): Let t(n) be a function with t(n) ≥ n. Then every t(n) time deterministic multitape
Turing machine has an equivalent O(t2(n)) time deterministic 1-tape Turing machine.
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Week8 monday

Theorem: ATM is not Turing-decidable.

Proof: Suppose towards a contradiction that there is a Turing machine that decides ATM . We call this
presumed machine MATM .

By assumption, for every Turing machine M and every string w

• If w ∈ L(M), then the computation of MATM on ⟨M,w⟩

• If w /∈ L(M), then the computation of MATM on ⟨M,w⟩

Define a new Turing machine using the high-level description:

D =“ On input ⟨M⟩, where M is a Turing machine:

1. Run MATM on ⟨M, ⟨M⟩⟩.
2. If MATM accepts, reject; if MATM rejects, accept.”

Is D a Turing machine?

Is D a decider?

What is the result of the computation of D on ⟨D⟩?
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Theorem (Sipser Theorem 4.22): A language is Turing-decidable if and only if both it and its complement
are Turing-recognizable.

Proof, first direction: Suppose language L is Turing-decidable. WTS that both it and its complement
are Turing-recognizable.

Proof, second direction: Suppose language L is Turing-recognizable, and so is its complement. WTS
that L is Turing-decidable.

Give an example of a decidable set:

Give an example of a recognizable undecidable set:

Give an example of an unrecognizable set:
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True or False: The class of Turing-decidable languages is closed under complementation?

Definition: A language L over an alphabet Σ is called co-recognizable if its complement, defined as
Σ∗ \ L = {x ∈ Σ∗ | x /∈ L}, is Turing-recognizable.

Notation: The complement of a set X is denoted with a superscript c, Xc, or an overline, X.

Week8 wednesday

Mapping reduction

Motivation: Proving that ATM is undecidable was hard. How can we leverage that work? Can we relate
the decidability / undecidability of one problem to another?

If problem X is no harder than problem Y

. . . and if Y is easy,

. . . then X must be easy too.

If problem X is no harder than problem Y

. . . and if X is hard,

. . . then Y must be hard too.

“Problem X is no harder than problem Y ” means “Can answer questions about membership in X by
converting them to questions about membership in Y ”.

Definition: A is mapping reducible to B means there is a computable function f : Σ∗ → Σ∗ such that
for all strings x in Σ∗,

x ∈ A if and only if f(x) ∈ B.

Notation: when A is mapping reducible to B, we write A ≤m B.

Intuition: A ≤m B means A is no harder than B, i.e. that the level of difficulty of A is less than or equal
the level of difficulty of B.
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Computable functions

Definition: A function f : Σ∗ → Σ∗ is a computable function means there is some Turing machine such
that, for each x, on input x the Turing machine halts with exactly f(x) followed by all blanks on the tape

Examples of computable functions:

The function that maps a string to a string which is one character longer and whose value, when interpreted
as a fixed-width binary representation of a nonnegative integer is twice the value of the input string (when
interpreted as a fixed-width binary representation of a non-negative integer)

f1 : Σ
∗ → Σ∗ f1(x) = x0

To prove f1 is computable function, we define a Turing machine computing it.

High-level description

“On input w

1. Append 0 to w.

2. Halt.”

Implementation-level description

“On input w

1. Sweep read-write head to the right until find first blank cell.

2. Write 0.

3. Halt.”

Formal definition ({q0, qacc, qrej}, {0, 1}, {0, 1, }, δ, q0, qacc, qrej) where δ is specified by the state diagram:
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The function that maps a string to the result of repeating the string twice.

f2 : Σ
∗ → Σ∗ f2(x) = xx

The function that maps strings that are not the codes of Turing machines to the empty string and that
maps strings that code Turing machines to the code of the related Turing machine that acts like the Turing
machine coded by the input, except that if this Turing machine coded by the input tries to reject, the new
machine will go into a loop.

f3 : Σ
∗ → Σ∗ f3(x) =

{
ε if x is not the code of a TM

⟨(Q ∪ {qtrap},Σ,Γ, δ′, q0, qacc, qrej)⟩ if x = ⟨(Q,Σ,Γ, δ, q0, qacc, qrej)⟩

where qtrap /∈ Q and

δ′((q, x)) =

{
(r, y, d) if q ∈ Q, x ∈ Γ, δ((q, x)) = (r, y, d), and r ̸= qrej

(qtrap, , R) otherwise
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The function that maps strings that are not the codes of CFGs to the empty string and that maps strings
that code CFGs to the code of a PDA that recognizes the language generated by the CFG.

Other examples?

Week8 friday

Recall definition: A is mapping reducible to B means there is a computable function f : Σ∗ → Σ∗ such
that for all strings x in Σ∗,

x ∈ A if and only if f(x) ∈ B.

Notation: when A is mapping reducible to B, we write A ≤m B.

Intuition: A ≤m B means A is no harder than B, i.e. that the level of difficulty of A is less than or equal
the level of difficulty of B.

Example: ATM ≤m ATM

Example: ADFA ≤m {ww | w ∈ {0, 1}∗}

Example: {0i1j | i ≥ 0, j ≥ 0} ≤m ATM

Theorem (Sipser 5.22): If A ≤m B and B is decidable, then A is decidable.

Theorem (Sipser 5.23): If A ≤m B and A is undecidable, then B is undecidable.
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Halting problem

HALTTM = {⟨M,w⟩ | M is a Turing machine, w is a string, and M halts on w}

Define F : Σ∗ → Σ∗ by

F (x) =

{
constout if x ̸= ⟨M,w⟩ for any Turing machine M and string w over the alphabet of M

⟨M ′, w⟩ if x = ⟨M,w⟩ for some Turing machine M and string w over the alphabet of M .

where constout = ⟨ , ε⟩ and M ′ is a Turing machine that computes like M except, if the
computation ever were to go to a reject state, M ′ loops instead.

F (⟨ , 001⟩) =

F (⟨ , 1⟩) =
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To use this function to prove that ATM ≤m HALTTM , we need two claims:

Claim (1): F is computable

Claim (2): for every x, x ∈ ATM iff F (x) ∈ HALTTM .

Week10 monday

Recall Definition (Sipser 7.1): For M a deterministic decider, its running time is the function f : N → N
given by

f(n) = max number of steps M takes before halting, over all inputs of length n

Recall Definition (Sipser 7.7): For each function t(n), the time complexity class TIME(t(n)), is defined
by

TIME(t(n)) = {L | L is decidable by a Turing machine with running time in O(t(n))}

Recall Definition (Sipser 7.12) : P is the class of languages that are decidable in polynomial time on a
deterministic 1-tape Turing machine

P =
⋃
k

TIME(nk)

Definition (Sipser 7.9): For N a nodeterministic decider. The running time of N is the function f : N → N
given by

f(n) = max number of steps N takes on any branch before halting, over all inputs of length n

Definition (Sipser 7.21): For each function t(n), the nondeterministic time complexity classNTIME(t(n)),
is defined by

NTIME(t(n)) = {L | L is decidable by a nondeterministic Turing machine with running time in O(t(n))}

NP =
⋃
k

NTIME(nk)

True or False: TIME(n2) ⊆ NTIME(n2)

True or False: NTIME(n2) ⊆ DTIME(n2)
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Examples in P

Can’t use nondeterminism; Can use multiple tapes; Often need to be “more clever” than näıve / brute force
approach

PATH = {⟨G, s, t⟩ | G is digraph with n nodes there is path from s to t}

Use breadth first search to show in P

RELPRIME = {⟨x, y⟩ | x and y are relatively prime integers}

Use Euclidean Algorithm to show in P

L(G) = {w | w is generated by G}

(where G is a context-free grammar). Use dynamic programming to show in P .

Examples in NP

“Verifiable” i.e. NP, Can be decided by a nondeterministic TM in polynomial time, best known deterministic
solution may be brute-force, solution can be verified by a deterministic TM in polynomial time.

HAMPATH = {⟨G, s, t⟩ | G is digraph with n nodes, there is path from s to t that goes through every node exactly once}

V ERTEX − COV ER = {⟨G, k⟩ | G is an undirected graph with n nodes that has a k-node vertex cover}

CLIQUE = {⟨G, k⟩ | G is an undirected graph with n nodes that has a k-clique}

SAT = {⟨X⟩ | X is a satisfiable Boolean formula with n variables}
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Every problem in NP is decidable with an exponential-time algorithm

Nondeterministic approach: guess a possible solution, verify that it works.

Brute-force (worst-case exponential time) approach: iterate over all possible solutions, for each one, check
if it works.

Problems in P Problems in NP
(Membership in any) regular language Any problem in P

(Membership in any) context-free language
ADFA SAT
EDFA CLIQUE
EQDFA V ERTEX − COV ER
PATH HAMPATH

RELPRIME . . .
. . .

Million-dollar question: Is P = NP?

One approach to trying to answer it is to look for hardest problems in NP and then (1) if we can show
that there are efficient algorithms for them, then we can get efficient algorithms for all problems in NP so
P = NP , or (2) these problems might be good candidates for showing that there are problems in NP for
which there are no efficient algorithms.
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Week10 wednesday

Definition (Sipser 7.29) Language A is polynomial-time mapping reducible to language B, written
A ≤P B, means there is a polynomial-time computable function f : Σ∗ → Σ∗ such that for every x ∈ Σ∗

x ∈ A iff f(x) ∈ B.

The function f is called the polynomial time reduction of A to B.

Theorem (Sipser 7.31): If A ≤P B and B ∈ P then A ∈ P .

Proof:

Definition (Sipser 7.34; based in Stephen Cook and Leonid Levin’s work in the 1970s): A language B is
NP-complete means (1) B is in NP and (2) every language A in NP is polynomial time reducible to B.

Theorem (Sipser 7.35): If B is NP-complete and B ∈ P then P = NP .

Proof:
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3SAT: A literal is a Boolean variable (e.g. x) or a negated Boolean variable (e.g. x̄). A Boolean formula is
a 3cnf-formula if it is a Boolean formula in conjunctive normal form (a conjunction of disjunctive clauses
of literals) and each clause has three literals.

3SAT = {⟨ϕ⟩ | ϕ is a satisfiable 3cnf-formula}

Example strings in 3SAT

Example strings not in 3SAT

Cook-Levin Theorem: 3SAT is NP -complete.

Are there other NP -complete problems? To prove that X is NP -complete

• From scratch: prove X is in NP and that all NP problems are polynomial-time reducible to X.

• Using reduction: prove X is in NP and that a known-to-be NP -complete problem is polynomial-time
reducible to X.
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CLIQUE: A k-clique in an undirected graph is a maximally connected subgraph with k nodes.

CLIQUE = {⟨G, k⟩ | G is an undirected graph with a k-clique}

Example strings in CLIQUE

Example strings not in CLIQUE

Theorem (Sipser 7.32):
3SAT ≤P CLIQUE

Given a Boolean formula in conjunctive normal form with k clauses and three literals per clause, we will
map it to a graph so that the graph has a clique if the original formula is satisfiable and the graph does
not have a clique if the original formula is not satisfiable.

The graph has 3k vertices (one for each literal in each clause) and an edge between all vertices except

• vertices for two literals in the same clause

• vertices for literals that are negations of one another

Example: (x ∨ ȳ ∨ z̄) ∧ (x̄ ∨ y ∨ z) ∧ (x ∨ y ∨ z)
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Week10 friday

Model of Computation Class of Languages

Deterministic finite automata: formal definition,
how to design for a given language, how to describe
language of a machine? Nondeterministic finite au-
tomata: formal definition, how to design for a given
language, how to describe language of a machine? Reg-
ular expressions: formal definition, how to design for a
given language, how to describe language of expression?
Also: converting between different models.

Class of regular languages: what are the clo-
sure properties of this class? which languages are
not in the class? using pumping lemma to prove
nonregularity.

Push-down automata: formal definition, how to de-
sign for a given language, how to describe language of a
machine? Context-free grammars: formal definition,
how to design for a given language, how to describe lan-
guage of a grammar?

Class of context-free languages: what are the
closure properties of this class? which languages
are not in the class?

Turing machines that always halt in polynomial time P

Nondeterministic Turing machines that always halt in
polynomial time

NP

Deciders (Turing machines that always halt): formal
definition, how to design for a given language, how to
describe language of a machine?

Class of decidable languages: what are the
closure properties of this class? which languages
are not in the class? using diagonalization and
mapping reduction to show undecidability

Turing machines formal definition, how to design for a
given language, how to describe language of a machine?

Class of recognizable languages: what are the
closure properties of this class? which languages
are not in the class? using closure and mapping
reduction to show unrecognizability
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Given a language, prove it is regular

Strategy 1: construct DFA recognizing the language and prove it works.

Strategy 2: construct NFA recognizing the language and prove it works.

Strategy 3: construct regular expression recognizing the language and prove it works.

“Prove it works” means . . .

Example: L = {w ∈ {0, 1}∗ | w has odd number of 1s or starts with 0}

Using NFA

Using regular expressions
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Example: Select all and only the options that result in a true statement: “To show a language A is not
regular, we can. . . ”

a. Show A is finite

b. Show there is a CFG generating A

c. Show A has no pumping length

d. Show A is undecidable
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Example: What is the language generated by the CFG with rules

S → aSb | bY | Y a

Y → bY | Y a | ε
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Example: Prove that the language T = {⟨M⟩ | M is a Turing machine and L(M) is infinite} is undecid-
able.

CC BY-NC-SA 2.0 Version August 7, 2024 (22)

https://creativecommons.org/licenses/by-nc-sa/2.0/


Example: Prove that the class of decidable languages is closed under concatenation.
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