
define-decision-problem

Week7 monday

Suppose M is a TM Suppose D is a TM Suppose E is an enumerator
that recognizes L that decides L that enumerates L

If string w is in L then . . .

If string w is not in L then . . .

A language L is recognized by a Turing machine M means

A Turing machine M recognizes a language L if means

A Turing machine M is a decider means

A language L is decided by a Turing machine M means

A Turing machine M decides a language L means

From Friday’s review quiz: Which of the following sentences make sense? Which of those are true?

A language is a decider if it always halts.

The union of two deciders is a decider.

A language is decidable if and only if it is recognizable.

There is a Turing machine that isn’t decidable.

There is a recognizable language that isn’t decided by any Turing machine.

CC BY-NC-SA 2.0 Version August 7, 2024 (1)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Claim: If two languages (over a fixed alphabet Σ) are Turing-recognizable, then their union is as well.

Proof using Turing machines:

Proof using nondeterministic Turing machines:

Proof using enumerators:

CC BY-NC-SA 2.0 Version August 7, 2024 (2)

https://creativecommons.org/licenses/by-nc-sa/2.0/

The first line of a high-level description of a Turing machine specifies the input to the machine, which
must be a string. This string may be the encoding of some object or list of objects.

Notation: ⟨O⟩ is the string that encodes the object O. ⟨O1, . . . , On⟩ is the string that encodes the list of
objects O1, . . . , On.

Assumption: There are Turing machines that can be called as subroutines to decode the string represen-
tations of common objects and interact with these objects as intended (data structures).

For example, since there are algorithms to answer each of the following questions, by Church-Turing thesis,
there is a Turing machine that accepts exactly those strings for which the answer to the question is “yes”

• Does a string over {0, 1} have even length?

• Does a string over {0, 1} encode a string of ASCII characters?1

• Does a DFA have a specific number of states?

• Do two NFAs have any state names in common?

• Do two CFGs have the same start variable?

A computational problem is decidable iff language encoding its positive problem instances is decidable.

The computational problem “Does a specific DFA accept a given string?” is encoded by the language

{representations of DFAs M and strings w such that w ∈ L(M)}
={⟨M,w⟩ | M is a DFA, w is a string, w ∈ L(M)}

The computational problem “Is the language generated by a CFG empty?” is encoded by the language

{representations of CFGs G such that L(G) = ∅}
={⟨G⟩ | G is a CFG, L(G) = ∅}

The computational problem “Is the given Turing machine a decider?” is encoded by the language

{representations of TMs M such that M halts on every input}
={⟨M⟩ | M is a TM and for each string w,M halts on w}

Note: writing down the language encoding a computational problem is only the first step in determining if
it’s recognizable, decidable, or . . .

1An introduction to ASCII is available on the w3 tutorial here.

CC BY-NC-SA 2.0 Version August 7, 2024 (3)

https://www.w3schools.com/charsets/ref_html_ascii.asp
https://creativecommons.org/licenses/by-nc-sa/2.0/

Week7 wednesday

Deciding a computational problem means building / defining a Turing machine that recognizes the language
encoding the computational problem, and that is a decider.

Some classes of computational problems help us understand the differences between the ma-
chine models we’ve been studying:

Acceptance problem

. . . for DFA ADFA {⟨B,w⟩ | B is a DFA that accepts input string w}

. . . for NFA ANFA {⟨B,w⟩ | B is a NFA that accepts input string w}

. . . for regular expressions AREX {⟨R,w⟩ | R is a regular expression that generates input string w}

. . . for CFG ACFG {⟨G,w⟩ | G is a context-free grammar that generates input string w}

. . . for PDA APDA {⟨B,w⟩ | B is a PDA that accepts input string w}

Language emptiness testing

. . . for DFA EDFA {⟨A⟩ | A is a DFA and L(A) = ∅}

. . . for NFA ENFA {⟨A⟩ | A is a NFA and L(A) = ∅}

. . . for regular expressions EREX {⟨R⟩ | R is a regular expression and L(R) = ∅}

. . . for CFG ECFG {⟨G⟩ | G is a context-free grammar and L(G) = ∅}

. . . for PDA EPDA {⟨A⟩ | A is a PDA and L(A) = ∅}

Language equality testing

. . . for DFA EQDFA {⟨A,B⟩ | A and B are DFAs and L(A) = L(B)}

. . . for NFA EQNFA {⟨A,B⟩ | A and B are NFAs and L(A) = L(B)}

. . . for regular expressions EQREX {⟨R,R′⟩ | R and R′ are regular expressions and L(R) = L(R′)}

. . . for CFG EQCFG {⟨G,G′⟩ | G and G′ are CFGs and L(G) = L(G′)}

. . . for PDA EQPDA {⟨A,B⟩ | A and B are PDAs and L(A) = L(B)}
Sipser Section 4.1

CC BY-NC-SA 2.0 Version August 7, 2024 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/

M1 M2 M3

Example strings in ADFA

Example strings in EDFA

Example strings in EQDFA

M1 = “On input ⟨M,w⟩, where M is a DFA and w is a string:

0. Type check encoding to check input is correct type.

1. Simulate M on input w (by keeping track of states in M , transition function of M , etc.)

2. If the simulations ends in an accept state of M , accept. If it ends in a non-accept state of
M , reject. ”

What is L(M1)?

Is M1 a decider?

M2 =“On input ⟨M,w⟩ where M is a DFA and w is a string,

1. Run M on input w.

2. If M accepts, accept; if M rejects, reject.”

What is L(M2)?

Is M2 a decider?

CC BY-NC-SA 2.0 Version August 7, 2024 (5)

https://creativecommons.org/licenses/by-nc-sa/2.0/

AREX =

ANFA =

True / False: AREX = ANFA = ADFA

True / False: AREX ∩ ANFA = ∅, AREX ∩ ADFA = ∅, ADFA ∩ ANFA = ∅

A Turing machine that decides ANFA is:

A Turing machine that decides AREX is:

CC BY-NC-SA 2.0 Version August 7, 2024 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

M3 =“On input ⟨M⟩ where M is a DFA,

1. For integer i = 1, 2, . . .

2. Let si be the ith string over the alphabet of M (ordered in string order).

3. Run M on input si.

4. If M accepts, . If M rejects, increment i and keep going.”

Choose the correct option to help fill in the blank so that M3 recognizes EDFA

A. accepts

B. rejects

C. loop for ever

D. We can’t fill in the blank in any way to make this work

E. None of the above

M4 = “ On input ⟨M⟩ where M is a DFA,

1. Mark the start state of M .

2. Repeat until no new states get marked:

3. Loop over the states of M .

4. Mark any unmarked state that has an incoming edge from a marked state.

5. If no accept state of A is marked, ; otherwise, ”.

To build a Turing machine that decides EQDFA, notice that

L1 = L2 iff ((L1 ∩ L2) ∪ (L2 ∩ L1)) = ∅

There are no elements that are in one set and not the other

MEQDFA =

Summary: We can use the decision procedures (Turing machines) of decidable problems as subroutines
in other algorithms. For example, we have subroutines for deciding each of ADFA, EDFA, EQDFA. We
can also use algorithms for known constructions as subroutines in other algorithms. For example, we have
subroutines for: counting the number of states in a state diagram, counting the number of characters in
an alphabet, converting DFA to a DFA recognizing the complement of the original language or a DFA
recognizing the Kleene star of the original language, constructing a DFA or NFA from two DFA or NFA
so that we have a machine recognizing the language of the union (or intersection, concatenation) of the
languages of the original machines; converting regular expressions to equivalent DFA; converting DFA to
equivalent regular expressions, etc.

CC BY-NC-SA 2.0 Version August 7, 2024 (7)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week7 friday

Acceptance problem

. . . for DFA ADFA {⟨B,w⟩ | B is a DFA that accepts input string w}

. . . for NFA ANFA {⟨B,w⟩ | B is a NFA that accepts input string w}

. . . for regular expressions AREX {⟨R,w⟩ | R is a regular expression that generates input string w}

. . . for CFG ACFG {⟨G,w⟩ | G is a context-free grammar that generates input string w}

. . . for PDA APDA {⟨B,w⟩ | B is a PDA that accepts input string w}

Acceptance problem
for Turing machines ATM {⟨M,w⟩ | M is a Turing machine that accepts input string w}
Language emptiness testing
for Turing machines ETM {⟨M⟩ | M is a Turing machine and L(M) = ∅}
Language equality testing
for Turing machines EQTM {⟨M1,M2⟩ | M1 and M2 are Turing machines and L(M1) = L(M2)}
Sipser Section 4.1

M1

M2

M3

Example strings in ATM

Example strings in ETM

Example strings in EQTM

CC BY-NC-SA 2.0 Version August 7, 2024 (8)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Theorem: ATM is Turing-recognizable.

Strategy: To prove this theorem, we need to define a Turing machine RATM such that L(RATM) = ATM .

Define RATM = “

Proof of correctness:

We will show that ATM is undecidable. First, let’s explore what that means.

CC BY-NC-SA 2.0 Version August 7, 2024 (9)

https://creativecommons.org/licenses/by-nc-sa/2.0/

ATuring-recognizable language is a set of strings that is the language recognized by some Turing machine.
We also say that such languages are recognizable.

A Turing-decidable language is a set of strings that is the language recognized by some decider. We also
say that such languages are decidable.

An unrecognizable language is a language that is not Turing-recognizable.

An undecidable language is a language that is not Turing-decidable.

True or False: Any undecidable language is also unrecognizable.

True or False: Any unrecognizable language is also undecidable.

To prove that a computational problem is decidable, we find/ build a Turing machine that recognizes the
language encoding the computational problem, and that is a decider.

How do we prove a specific problem is not decidable?

How would we even find such a computational problem?

Counting arguments for the existence of an undecidable language:

• The set of all Turing machines is countably infinite.

• Each Turing-recognizable language is associated with a Turing machine in a one-to-one relationship,
so there can be no more Turing-recognizable languages than there are Turing machines.

• Since there are infinitely many Turing-recognizable languages (think of the singleton sets), there are
countably infinitely many Turing-recognizable languages.

• Such the set of Turing-decidable languages is an infinite subset of the set of Turing-recognizable
languages, the set of Turing-decidable languages is also countably infinite.

Since there are uncountably many languages (because P(Σ∗) is uncountable), there are uncountably many
unrecognizable languages and there are uncountably many undecidable languages.

Thus, there’s at least one undecidable language!

What’s a specific example of a language that is unrecognizable or undecidable?

To prove that a language is undecidable, we need to prove that there is no Turing machine that decides it.

Key idea: proof by contradiction relying on self-referential disagreement.

CC BY-NC-SA 2.0 Version August 7, 2024 (10)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week1 monday

We will use vocabulary that should be familiar from your discrete math and introduction to proofs classes.
Some of the notation conventions may be a bit different: we will use the notation from this class’ textbook2.

Write out in words the meaning of the symbols below:

{a, b, c}

|{a, b, a}| = 2

|aba| = 3

(a, 3, 2, b, b)

Term Typical symbol Meaning

Alphabet Σ, Γ A non-empty finite set
Symbol over Σ σ, b, x An element of the alphabet Σ
String over Σ u, v, w A finite list of symbols from Σ
The set of all strings over Σ Σ∗ The collection of all possible strings formed from symbols

from Σ
(Some) language over Σ L (Some) set of strings over Σ
Empty string ε The string of length 0
Empty set ∅ The empty language
The power set of a set X P(X) The set of all subsets of X
Natural numbers N The set of positive integers
Finite set The empty set or a set whose distinct elements can be

counted by a natural number
Infinite set A set that is not finite.

Pages 3, 4, 6, 13, 14, 53

2Page references are to the 3rd edition (International) of Sipser’s Introduction to the Theory of Computation, available
through various sources for under $30. You may be able to opt in to purchase a digital copy through Canvas. Copies of
the book are also available for those who can’t access the book to borrow from the course instructor, while supplies last
(minnes@eng.ucsd.edu)

CC BY-NC-SA 2.0 Version August 7, 2024 (11)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Term Notation Meaning

Reverse of a string w wR write w in the opposite order, if w = w1 · · ·wn then
wR = wn · · ·w1. Note: ε

R = ε
Concatenating strings x and y xy take x = x1 · · ·xm, y = y1 · · · yn and form xy =

x1 · · ·xmy1 · · · yn
String z is a substring of string w there are strings u, v such that w = uzv
String x is a prefix of string y there is a string z such that y = xz
String x is a proper prefix of string y x is a prefix of y and x ̸= y
Shortlex order, also known as string
order over alphabet Σ

Order strings over Σ first by length and then according
to the dictionary order, assuming symbols in Σ have
an ordering.

Pages 13, 14

Circle the correct choice:

A string over an alphabet Σ is an element of Σ∗ OR a subset of Σ∗.

A language over an alphabet Σ is an element of Σ∗ OR a subset of Σ∗.

Extra examples for practice:

With Σ1 = {0, 1} and Σ2 = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z} and Γ = {0, 1, x, y, z}

An example of a string of length 3 over Σ1 is

An example of a string of length 1 over Σ2 is

The number of distinct strings of length 2 over Γ is

An example of a language over Σ1 of size 1 is

An example of an infinite language over Σ1 is

An example of a finite language over Γ is

True or False: ε ∈ Σ1

True or False: ε is a string over Σ1

True or False: ε is a language over Σ1

True or False: ε is a prefix of some string over Σ1

True or False: There is a string over Σ1 that is a proper prefix of ε

The first five strings over Σ1 in string order, using the ordering 0 < 1:

The first five strings over Σ2 in string order, using the usual alphabetical ordering for single letters:

CC BY-NC-SA 2.0 Version August 7, 2024 (12)

https://creativecommons.org/licenses/by-nc-sa/2.0/

