
context-free-grammars

Week5 monday

Three different CFGs that each generate the language {abba}

({S, T, V,W}, {a, b}, {S → aT, T → bV, V → bW,W → a}, S)

({Q}, {a, b}, {Q → abba}, Q)

({X, Y }, {a, b}, {X → aY a, Y → bb}, X)

Design a CFG to generate the language {anbn | n ≥ 0}

Sample derivation:

Design a CFG to generate the language {aibj | j ≥ i ≥ 0}

Sample derivation:
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Theorem 2.20: A language is generated by some context-free grammar if and only if it is recognized by
some push-down automaton.

Definition: a language is called context-free if it is the language generated by a context-free grammar.
The class of all context-free language over a given alphabet Σ is called CFL.

Consequences:

• Quick proof that every regular language is context free

• To prove closure of the class of context-free languages under a given operation, we can choose either
of two modes of proof (via CFGs or PDAs) depending on which is easier

• To fully specify a PDA we could give its 6-tuple formal definition or we could give its input alphabet,
stack alphabet, and state diagram. An informal description of a PDA is a step-by-step description of
how its computations would process input strings; the reader should be able to reconstruct the state
diagram or formal definition precisely from such a descripton. The informal description of a PDA can
refer to some common modules or subroutines that are computable by PDAs:

– PDAs can “test for emptiness of stack” without providing details. How? We can always push
a special end-of-stack symbol, $, at the start, before processing any input, and then use this
symbol as a flag.

– PDAs can “test for end of input” without providing details. How? We can transform a PDA to
one where accepting states are only those reachable when there are no more input symbols.

Over Σ = {a, b}, let L = {anbm | n ̸= m}. Goal: Prove L is context-free.
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Suppose L1 and L2 are context-free languages over Σ. Goal: L1 ∪ L2 is also context-free.

Approach 1: with PDAs

Let M1 = (Q1,Σ,Γ1, δ1, q1, F1) and M2 = (Q2,Σ,Γ2, δ2, q2, F2) be PDAs with L(M1) = L1 and L(M2) = L2.

Define M =

Approach 2: with CFGs

Let G1 = (V1,Σ, R1, S1) and G2 = (V2,Σ, R2, S2) be CFGs with L(G1) = L1 and L(G2) = L2.

Define G =
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Suppose L1 and L2 are context-free languages over Σ. Goal: L1 ◦ L2 is also context-free.

Approach 1: with PDAs

Let M1 = (Q1,Σ,Γ1, δ1, q1, F1) and M2 = (Q2,Σ,Γ2, δ2, q2, F2) be PDAs with L(M1) = L1 and L(M2) = L2.

Define M =

Approach 2: with CFGs

Let G1 = (V1,Σ, R1, S1) and G2 = (V2,Σ, R2, S2) be CFGs with L(G1) = L1 and L(G2) = L2.

Define G =
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Summary

Over a fixed alphabet Σ, a language L is regular

iff it is described by some regular expression
iff it is recognized by some DFA
iff it is recognized by some NFA

Over a fixed alphabet Σ, a language L is context-free

iff it is generated by some CFG
iff it is recognized by some PDA

Fact: Every regular language is a context-free language.

Fact: There are context-free languages that are not nonregular.

Fact: There are countably many regular languages.

Fact: There are countably inifnitely many context-free languages.

Consequence: Most languages are not context-free!

Examples of non-context-free languages

{anbncn | 0 ≤ n, n ∈ Z}
{aibjck | 0 ≤ i ≤ j ≤ k, i ∈ Z, j ∈ Z, k ∈ Z}
{ww | w ∈ {0, 1}∗}

(Sipser Ex 2.36, Ex 2.37, 2.38)

There is a Pumping Lemma for CFL that can be used to prove a specific language is non-context-free: If
A is a context-free language, there there is a number p where, if s is any string in A of length at least p,
then s may be divided into five pieces s = uvxyz where (1) for each i ≥ 0, uvixyiz ∈ A, (2) |uv| > 0, (3)
|vxy| ≤ p. We will not go into the details of the proof or application of Pumping Lemma for CFLs this
quarter.
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Week5 wednesday

A set X is said to be closed under an operation OP if, for any elements in X, applying OP to them gives
an element in X.

True/False Closure claim
True The set of integers is closed under multiplication.

∀x∀y ( (x ∈ Z ∧ y ∈ Z) → xy ∈ Z )
True For each set A, the power set of A is closed under intersection.

∀A1∀A2 ( (A1 ∈ P(A) ∧ A2 ∈ P(A) ∈ Z) → A1 ∩ A2 ∈ P(A) )
The class of regular languages over Σ is closed under complementation.

The class of regular languages over Σ is closed under union.

The class of regular languages over Σ is closed under intersection.

The class of regular languages over Σ is closed under concatenation.

The class of regular languages over Σ is closed under Kleene star.

The class of context-free languages over Σ is closed under complementation.

The class of context-free languages over Σ is closed under union.

The class of context-free languages over Σ is closed under intersection.

The class of context-free languages over Σ is closed under concatenation.

The class of context-free languages over Σ is closed under Kleene star.

Assume Σ = {0, 1,#}

Σ∗ Regular / nonregular and context-free / not context-free
{0i#1j | i ≥ 0, j ≥ 0} Regular / nonregular and context-free / not context-free

{0i1j#1j0i | i ≥ 0, j ≥ 0} Regular / nonregular and context-free / not context-free
{0i1j#0i1j | i ≥ 0, j ≥ 0} Regular / nonregular and context-free / not context-free
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Turing machines: unlimited read + write memory, unlimited time (computation can proceed without
“consuming” input and can re-read symbols of input)

• Division betweeen program (CPU, state diagram) and data

• Unbounded memory gives theoretical limit to what modern computation (including PCs, supercom-
puters, quantum computers) can achieve

• State diagram formulation is simple enough to reason about (and diagonalize against) while expressive
enough to capture modern computation

For Turing machine M = (Q,Σ,Γ, δ, q0, qaccept, qreject) the computation of M on a string w over Σ is:

• Read/write head starts at leftmost position on tape.

• Input string is written on |w|-many leftmost cells of tape, rest of the tape cells have the blank symbol.
Tape alphabet is Γ with ∈ Γ and Σ ⊆ Γ. The blank symbol /∈ Σ.

• Given current state of machine and current symbol being read at the tape head, the machine transitions
to next state, writes a symbol to the current position of the tape head (overwriting existing symbol),
and moves the tape head L or R (if possible). Formally, transition function is

δ : Q× Γ → Q× Γ× {L,R}

• Computation ends if and when machine enters either the accept or the reject state. This is called
halting. Note: qaccept ̸= qreject.

The language recognized by the Turing machine M , is

{w ∈ Σ∗ | computation of M on w halts after entering the accept state} = {w ∈ Σ∗ | w is accepted by M}
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An example Turing machine: Σ = ,Γ =

δ((q0, 0)) =

Formal definition:

Sample computation:

q0 ↓
0 0 0

The language recognized by this machine is . . .

Extra practice:

Formal definition:

Sample computation:
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