
Week6

Monday

For Turing machine M = (Q,Σ,Γ, δ, q0, qaccept, qreject) where δ is the transition function

δ : Q× Γ → Q× Γ× {L,R}

the computation of M on a string w over Σ is:

• Read/write head starts at leftmost position on tape.

• Input string is written on |w|-many leftmost cells of tape, rest of the tape cells have the blank symbol.
Tape alphabet is Γ with ∈ Γ and Σ ⊆ Γ. The blank symbol /∈ Σ.

• Given current state of machine and current symbol being read at the tape head, the machine transitions
to next state, writes a symbol to the current position of the tape head (overwriting existing symbol),
and moves the tape head L or R (if possible).

• Computation ends if and when machine enters either the accept or the reject state. This is called
halting. Note: qaccept ̸= qreject.

The language recognized by the Turing machine M , is L(M) = {w ∈ Σ∗ | w is accepted by M},
which is defined as

{w ∈ Σ∗ | computation of M on w halts after entering the accept state}

CC BY-NC-SA 2.0 Version August 7, 2024 (1)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Formal definition:

Sample computation:

q0 ↓
0 0 0

The language recognized by this machine is . . .

To define a Turing machine, we could give a

• Formal definition, namely the 7-tuple of parameters including set of states, input alphabet, tape
alphabet, transition function, start state, accept state, and reject state; or,

• Implementation-level definition: English prose that describes the Turing machine head move-
ments relative to contents of tape, and conditions for accepting / rejecting based on those contents.

Conventions for drawing state diagrams of Turing machines: (1) omit the reject state from the diagram
(unless it’s the start state), (2) any missing transitions in the state diagram have value (qreject, , R).

CC BY-NC-SA 2.0 Version August 7, 2024 (2)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Sipser Figure 3.10

Implementation level description of this machine:

Zig-zag across tape to corresponding po-
sitions on either side of # to check
whether the characters in these positions
agree. If they do not, or if there is no #,
reject. If they do, cross them off.

Once all symbols to the left of the # are
crossed off, check for any un-crossed-off
symbols to the right of #; if there are
any, reject; if there aren’t, accept.

Computation on input string 01#01

q1 ↓
0 1 # 0 1

The language recognized by this machine is

{w#w | w ∈ {0, 1}∗}

CC BY-NC-SA 2.0 Version August 7, 2024 (3)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Extra practice

Computation on input string 01#1

q1 ↓
0 1 # 1

CC BY-NC-SA 2.0 Version August 7, 2024 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review: Week 6 Monday

Recall: Review quizzes based on class material are assigned each day. These quizzes will help you track
and confirm your understanding of the concepts and examples we work in class. Quizzes can be submitted
on Gradescope as many times (with no penalty) as you like until the quiz deadline: the three quizzes each
week are all due on Friday (with no penalty late submission open until Sunday).

Please complete the review quiz questions on Gradescope about formal and implementation-level descrip-
tions of Turing machines.

Pre class reading for next time: pages 176-177 on variants of Turing machines

CC BY-NC-SA 2.0 Version August 7, 2024 (5)

http://gradescope.com
https://creativecommons.org/licenses/by-nc-sa/2.0/

Wednesday

Fix Σ = {0, 1}, Γ = {0, 1, } for the Turing machines with the following state diagrams:

Implementation level description: Implementation level description:

Example of string accepted: Example of string accepted:
Example of string rejected: Example of string rejected:

Implementation level description: Implementation level description:

Example of string accepted: Example of string accepted:
Example of string rejected: Example of string rejected:

Two models of computation are called equally expressive when every language recognizable with the first
model is recognizable with the second, and vice versa.

True / False: NFAs and PDAs are equally expressive.

True / False: Regular expressions and CFGs are equally expressive.

To say a language is Turing-recognizable means that there is some Turing machine that recognizes it.

Some examples of models that are equally expressive with deterministic Turing
machines:

CC BY-NC-SA 2.0 Version August 7, 2024 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

May-stay machines The May-stay machine model is the same as the usual Turing machine model,
except that on each transition, the tape head may move L, move R, or Stay.

Formally: (Q,Σ,Γ, δ, q0, qaccept, qreject) where

δ : Q× Γ → Q× Γ× {L,R, S}

Claim: Turing machines and May-stay machines are equally expressive. To prove . . .

To translate a standard TM to a may-stay machine:

To translate one of the may-stay machines to standard TM: any time TM would Stay, move right then left.

Formally: suppose MS = (Q,Σ,Γ, δ, q0, qacc, qrej) has δ : Q × Γ → Q × Γ × {L,R, S}. Define the Turing-
machine

Mnew = ()

CC BY-NC-SA 2.0 Version August 7, 2024 (7)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Multitape Turing machine A multitape Turing macihne with k tapes can be formally representated

as (Q,Σ,Γ, δ, q0, qacc, qrej) where Q is the finite set of states, Σ is the input alphabet with /∈ Σ, Γ is the
tape alphabet with Σ ⊊ Γ , δ : Q× Γk → Q× Γk × {L,R}k (where k is the number of states)

If M is a standard TM, it is a 1-tape machine.

To translate a k-tape machine to a standard TM: Use a new symbol to separate the contents of each tape
and keep track of location of head with special version of each tape symbol. Sipser Theorem 3.13

Extra practice: Wikipedia Turing machine Define a machine (Q,Γ, b,Σ, q0, F, δ) where Q is the finite
set of states Γ is the tape alphabet, b ∈ Γ is the blank symbol, Σ ⊊ Γ is the input alphabet, q0 ∈ Q is the
start state, F ⊆ Q is the set of accept states, δ : (Q \ F) × Γ ̸→ Q × Γ × {L,R} is a partial transition
function If computation enters a state in F , it accepts If computation enters a configuration where δ is not
defined, it rejects . Hopcroft and Ullman, cited by Wikipedia

CC BY-NC-SA 2.0 Version August 7, 2024 (8)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Enumerators Enumerators give a different model of computation where a language is produced, one
string at a time, rather than recognized by accepting (or not) individual strings.

Each enumerator machine has finite state control, unlimited work tape, and a printer. The computation
proceeds according to transition function; at any point machine may “send” a string to the printer.

E = (Q,Σ,Γ, δ, q0, qprint)

Q is the finite set of states, Σ is the output alphabet, Γ is the tape alphabet (Σ ⊊ Γ, ∈ Γ \ Σ),

δ : Q× Γ× Γ → Q× Γ× Γ× {L,R} × {L,R}

where in state q, when the working tape is scanning character x and the printer tape is scanning character
y, δ((q, x, y)) = (q′, x′, y′, dw, dp) means transition to control state q′, write x′ on the working tape, write y′

on the printer tape, move in direction dw on the working tape, and move in direction dp on the printer tape.
The computation starts in q0 and each time the computation enters qprint the string from the leftmost edge
of the printer tape to the first blank cell is considered to be printed.

The language enumerated by E, L(E), is {w ∈ Σ∗ | E eventually, at finite time, prints w}.

q0
∗
∗

CC BY-NC-SA 2.0 Version August 7, 2024 (9)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Theorem 3.21 A language is Turing-recognizable iff some enumerator enumerates it.

Proof:

Assume L is enumerated by some enumerator, E, so L = L(E). We’ll use E in a subroutine within a
high-level description of a new Turing machine that we will build to recognize L.

Goal: build Turing machine ME with L(ME) = L(E).

Define ME as follows: ME = “On input w,

1. Run E. For each string x printed by E.

2. Check if x = w. If so, accept (and halt); otherwise, continue.”

Assume L is Turing-recognizable and there is a Turing machine M with L = L(M). We’ll use M in a
subroutine within a high-level description of an enumerator that we will build to enumerate L.

Goal: build enumerator EM with L(EM) = L(M).

Idea: check each string in turn to see if it is in L.

How? Run computation of M on each string. But: need to be careful about computations that don’t halt.

Recall String order for Σ = {0, 1}: s1 = ε, s2 = 0, s3 = 1, s4 = 00, s5 = 01, s6 = 10, s7 = 11, s8 = 000, . . .

Define EM as follows: EM = “ ignore any input. Repeat the following for i = 1, 2, 3, . . .

1. Run the computations of M on s1, s2, . . . , si for (at most) i steps each

2. For each of these i computations that accept during the (at most) i steps, print out the accepted
string.”

CC BY-NC-SA 2.0 Version August 7, 2024 (10)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review: Week 6 Wednesday

Please complete the review quiz questions on Gradescope about variants of Turing machines.

Pre class reading for next time: Theorem 3.16 on page 178 (nondeterministism)

CC BY-NC-SA 2.0 Version August 7, 2024 (11)

http://gradescope.com
https://creativecommons.org/licenses/by-nc-sa/2.0/

Friday

Nondeterministic Turing machine

At any point in the computation, the nondeterministic machine may proceed according to several possibil-
ities: (Q,Σ,Γ, δ, q0, qacc, qrej) where

δ : Q× Γ → P(Q× Γ× {L,R})

The computation of a nondeterministic Turing machine is a tree with branching when the next step of the
computation has multiple possibilities. A nondeterministic Turing machine accepts a string exactly when
some branch of the computation tree enters the accept state.

Given a nondeterministic machine, we can use a 3-tape Turing machine to simulate it by doing a breadth-
first search of computation tree: one tape is “read-only” input tape, one tape simulates the tape of the
nondeterministic computation, and one tape tracks nondeterministic branching. Sipser page 178

Two models of computation are called equally expressive when every language recognizable with the first
model is recognizable with the second, and vice versa.

Church-Turing Thesis (Sipser p. 183): The informal notion of algorithm is formalized completely and
correctly by the formal definition of a Turing machine. In other words: all reasonably expressive models of
computation are equally expressive with the standard Turing machine.

CC BY-NC-SA 2.0 Version August 7, 2024 (12)

https://creativecommons.org/licenses/by-nc-sa/2.0/

A language L is recognized by a Turing machine M means

A Turing machine M recognizes a language L if means

A Turing machine M is a decider means

A language L is decided by a Turing machine M means

A Turing machine M decides a language L means

Fix Σ = {0, 1}, Γ = {0, 1, } for the Turing machines with the following state diagrams:

Decider? Yes / No Decider? Yes / No

Decider? Yes / No Decider? Yes / No

CC BY-NC-SA 2.0 Version August 7, 2024 (13)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Claim: If two languages (over a fixed alphabet Σ) are Turing-recognizable, then their union is as well.

Proof using Turing machines:

Proof using nondeterministic Turing machines:

Proof using enumerators:

CC BY-NC-SA 2.0 Version August 7, 2024 (14)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Describing Turing machines (Sipser p. 185)

To define a Turing machine, we could give a

• Formal definition: the 7-tuple of parameters including set of states, input alphabet, tape alphabet,
transition function, start state, accept state, and reject state; or,

• Implementation-level definition: English prose that describes the Turing machine head move-
ments relative to contents of tape, and conditions for accepting / rejecting based on those contents.

• High-level description: description of algorithm (precise sequence of instructions), without im-
plementation details of machine. As part of this description, can “call” and run another TM as a
subroutine.

The Church-Turing thesis posits that each algorithm can be implemented by some Turing machine

High-level descriptions of Turing machine algorithms are written as indented text within quotation marks.

Stages of the algorithm are typically numbered consecutively.

The first line specifies the input to the machine, which must be a string. This string may be the encoding
of some object or list of objects.

Notation: ⟨O⟩ is the string that encodes the object O. ⟨O1, . . . , On⟩ is the string that encodes the list of
objects O1, . . . , On.

Assumption: There are Turing machines that can be called as subroutines to decode the string represen-
tations of common objects and interact with these objects as intended (data structures).

For example, since there are algorithms to answer each of the following questions, by Church-Turing thesis,
there is a Turing machine that accepts exactly those strings for which the answer to the question is “yes”

• Does a string over {0, 1} have even length?

• Does a string over {0, 1} encode a string of ASCII characters?1

• Does a DFA have a specific number of states?

• Do two NFAs have any state names in common?

• Do two CFGs have the same start variable?

1An introduction to ASCII is available on the w3 tutorial here.

CC BY-NC-SA 2.0 Version August 7, 2024 (15)

https://www.w3schools.com/charsets/ref_html_ascii.asp
https://creativecommons.org/licenses/by-nc-sa/2.0/

Review: Week 6 Friday

Please complete the review quiz questions on Gradescope about descriptions of Turing machines.

Pre class reading for next time: Page 184-185 Terminology for describing Turing machines

CC BY-NC-SA 2.0 Version August 7, 2024 (16)

http://gradescope.com
https://creativecommons.org/licenses/by-nc-sa/2.0/

