Week4

Monday

Recap so far: In DFA, the only memory available is in the states. Automata can only “remember” finitely far
in the past and finitely much information, because they can have only finitely many states. If a computation
path of a DFA visits the same state more than once, the machine can’t tell the difference between the first
time and future times it visits this state. Thus, if a DFA accepts one long string, then it must accept
(infinitely) many similar strings.

Definition A positive integer p is a pumping length of a language L over ¥ means that, for each string
s € ¥* if |s| > p and s € L, then there are strings z,y, z such that

s =xYz

and ‘
ly| > 0, for each i > 0, zy'z € L, and lzy| < p.

Negation: A positive integer p is not a pumping length of a language L over X iff
3s(|s|>pAse LAYz ((s=ayzAly| > O0A|zy| <p)—Ji(i >0Azy'z¢ L)))
Informally:

Restating Pumping Lemma: If L is a regular language, then it has a pumping length.

Contrapositive: If L has no pumping length, then it is nonregular.

The Pumping Lemma cannot be used to prove that a language s regular.

The Pumping Lemma can be used to prove that a language s not regular.

FExtra practice: Exercise 1.49 in the book.

Proof strategy: To prove that a language L is not regular,

e Consider an arbitrary positive integer p
e Prove that p is not a pumping length for L

e Conclude that L does not have any pumping length, and therefore it is not regular.

CC BY-NC-SA 2.0 Version August 7, 2024 (1)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: ¥ = {0,1}, L = {0"1" | n > 0}.

Fix p an arbitrary positive integer. List strings that are in L and have length greater than or equal to p:

Pick s =

Suppose s = zyz with |zy| < p and |y| > 0.

Then when i = =

CC BY-NC-SA 2.0 Version August 7, 2024 (2)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: ¥ = {0,1}, L = {ww® | w € {0,1}*}.

Fix p an arbitrary positive integer. List strings that are in L and have length greater than or equal to p:

Pick s =

Suppose s = zyz with |zy| < p and |y| > 0.

Then when i = =

Example: ¥ = {0,1}, L ={0/1* | j > k > 0}.

Fix p an arbitrary positive integer. List strings that are in L and have length greater than or equal to p:

Pick s =

Suppose s = zyz with |zy| < p and |y| > 0.

Then when i = =

Example: ¥ = {0,1}, L = {0"1™0" | m,n > 0}.

Fix p an arbitrary positive integer. List strings that are in L and have length greater than or equal to p:

Pick s =

Suppose s = zyz with |zy| < p and |y| > 0.

Then when i = T

CC BY-NC-SA 2.0 Version August 7, 2024 (3)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Extra practice:

Language selL sé¢ L Is the language regular or nonregular?

{a™" |0 <n<5}
{b"a" | n > 2}
{a™b"] 0 <m < n}
{a™"™ | m >n+3,n>0}
{"™a™ | m >1,n> 3}
{w € {a,b}* | w = wR}

{ww® | w € {a,b}*}

Review: Week 4 Monday

Recall: Review quizzes based on class material are assigned each day. These quizzes will help you track
and confirm your understanding of the concepts and examples we work in class. Quizzes can be submitted
on Gradescope as many times (with no penalty) as you like until the quiz deadline: the three quizzes each
week are all due on Friday (with no penalty late submission open until Sunday).

Please complete the review quiz questions on Gradescope about pumping lemma and nonregular sets.

Pre class reading for next time: Page 112

CC BY-NC-SA 2.0 Version August 7, 2024 (4)

http://gradescope.com
https://creativecommons.org/licenses/by-nc-sa/2.0/

Wednesday

Regular sets are not the end of the story

e Many nice / simple / important sets are not regular

e Limitation of the finite-state automaton model: Can’t “count”, Can only remember finitely far into
the past, Can’t backtrack, Must make decisions in “real-time”

e We know actual computers are more powerful than this model...
The next model of computation. Idea: allow some memory of unbounded size. How?

e To generalize regular expressions: context-free grammars

e To generalize NFA: Pushdown automata, which is like an NFA with access to a stack: Number
of states is fixed, number of entries in stack is unbounded. At each step (1) Transition to new state
based on current state, letter read, and top letter of stack, then (2) (Possibly) push or pop a letter to
(or from) top of stack. Accept a string iff there is some sequence of states and some sequence of stack
contents which helps the PDA processes the entire input string and ends in an accepting state.

Is there a PDA that recognizes the nonregular language {0"1™ | n > 0}?

CC BY-NC-SA 2.0 Version August 7, 2024 (5)

https://creativecommons.org/licenses/by-nc-sa/2.0/

The PDA with state diagram above can be informally described as:

Read symbols from the input. As each 0 is read, push it onto the stack. As soon as 1s are seen,
pop a 0 off the stack for each 1 read. If the stack becomes empty and we are at the end of the
input string, accept the input. If the stack becomes empty and there are 1s left to read, or if 1s
are finished while the stack still contains Os, or if any Os appear in the string following 1s, reject
the input.

Trace the computation of this PDA on the input string 01.

Trace the computation of this PDA on the input string 011.

A PDA recognizing the set { } can be informally described as:

Read symbols from the input. As each 0 is read, push it onto the stack. As soon as 1s are seen,
pop a 0 off the stack for each 1 read. If the stack becomes empty and there is exactly one 1 left
to read, read that 1 and accept the input. If the stack becomes empty and there are either zero
or more than one 1s left to read, or if the 1s are finished while the stack still contains 0Os, or if
any Os appear in the input following 1s, reject the input.

Modify the state diagram below to get a PDA that implements this description:

CC BY-NC-SA 2.0 Version August 7, 2024 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Definition A pushdown automaton (PDA) is specified by a 6-tuple (Q, %, T4, qo, F') where @ is the
finite set of states, X is the input alphabet, I' is the stack alphabet,

§:Q x3.xT.—=P(@QxT,)

is the transition function, ¢y € @) is the start state, F' C (@) is the set of accept states.

Draw the state diagram and give the formal definition of a PDA with ¥ =T".

Draw the state diagram and give the formal definition of a PDA with ¥ N T" = 0.

CC BY-NC-SA 2.0 Version August 7, 2024 (7)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Extra practice: Consider the state diagram of a PDA with input alphabet ¥ and stack alphabet T'.

Label means
a,b;c whenae X bel', cel

a,e;cwhena € X, cel’

a,b;e whena e X, bel’

a,e;e when a € ¥

How does the meaning change if a is replaced by 7

Note: alternate notation is to replace ; with —

Review: Week 4 Wednesday

Please complete the review quiz questions on Gradescope about PDA definitions.

Pre class reading for next time: Page 102

CC BY-NC-SA 2.0 Version August 7, 2024 (8)

http://gradescope.com
https://creativecommons.org/licenses/by-nc-sa/2.0/

Friday

For the PDA state diagrams below, ¥ = {0, 1}.

Mathematical description of language State diagram of PDA recognizing language

[={$,#}

I =1{Q,1}

{07270 | 4,5,k > 0}

CC BY-NC-SA 2.0 Version August 7, 2024 (9)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Big picture: PDAs were motivated by wanting to add some memory of unbounded size to NFA. How do we
accomplish a similar enhancement of regular expressions to get a syntactic model that is more expressive?

DFA, NFA, PDA: Machines process one input string at a time; the computation of a machine on its input

string reads the input from left to right.

Regular expressions: Syntactic descriptions of all strings that match a particular pattern; the language
described by a regular expression is built up recursively according to the expression’s syntax

Context-free grammars: Rules to produce one string at a time, adding characters from the middle,
beginning, or end of the final string as the derivation proceeds.

’ Term Typical symbol Definition
Context-free grammar G G=(V,X,R,S)
(CFG)
Variables \%4 Finite set of symbols that represent phases in production
pattern
Terminals by Alphabet of symbols of strings generated by CFG
VNI =90
Rules R Each ruleis A — u with A€ V and u € (VU X)*
Start variable S Usually on LHS of first / topmost rule
Derivation Sequence of substitutions in a CFG
S = ... = w Start with start variable, apply one rule to one occurrence
of a variable at a time
Language generated by the L(G) {w € ¥* | there is derivation in G that ends in w} =
CFG G {we¥ | S = *w}
Context-free language A language that is the language generated by some CFG
Sipser pages 102-103

Examples of context-free grammars, derivations in those grammars, and the languages gen-

erated by those grammars

G1 = ({S},{0}, R, S) with rules

In L(Gl) Ce

Not in L(Gy) ...

S — 08
S =0

CC BY-NC-SA 2.0 Version August 7, 2024 (10)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Gy = ({S}a {07 1}7 R, S)

In L(Gg) e

Not in L(Gs) ...

({S,T},{0,1}, R, S) with rules

In L(Gs) ...

Not in L(Gj3) ...

S 08|15 |«

S — T1T1TIT
T =0T |1T | e

CC BY-NC-SA 2.0 Version August 7, 2024 (11)

https://creativecommons.org/licenses/by-nc-sa/2.0/

G4y = ({4, B},{0,1}, R, A) with rules
A= 040 | 0AL | LAO | 1A1 | 1

In L(G4) c.

Not in L(Gy) ...

Extra practice: Is there a CFG G with L(G) = (7

CC BY-NC-SA 2.0 Version August 7, 2024 (12)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review: Week 4 Friday

Please complete the review quiz questions on Gradescope about PDA construction.

CC BY-NC-SA 2.0 Version August 7, 2024 (13)

http://gradescope.com
https://creativecommons.org/licenses/by-nc-sa/2.0/

