
Week1

Before we start

We are committed to fostering a learning environment for this course that supports a diversity of thoughts,
perspectives and experiences, and respects your identities (including race, ethnicity, heritage, gender, sex,
class, sexuality, religion, ability, age, educational background, etc.). Our goal is to create a diverse and
inclusive learning environment where all students feel comfortable and can thrive.

If you or someone you know is suffering from food and/or housing insecurities there are UCSD resources
here to help:

Basic Needs Office: https://basicneeds.ucsd.edu/

Triton Food Pantry (in the old Student Center) is free and anonymous, and includes produce:

https://www.facebook.com/tritonfoodpantry/

Mutual Aid UCSD: https://mutualaiducsd.wordpress.com/

Financial aid resources, the possibility of emergency grant funding, and off-campus housing referral resources
are available. See CAPS and your college dean.

If you find yourself in an uncomfortable situation, ask for help. We are committed to upholding University
policies regarding nondiscrimination, sexual violence and sexual harassment.

Counseling and Psychological Services (CAPS) at 858 5343755 or http://caps.ucsd.edu

OPHD at (858) 534-8298, ophd@ucsd.edu , http://ophd.ucsd.edu. CARE at Sexual Assault Resource
Center at 858 5345793 sarc@ucsd.edu http://care.ucsd.edu

Please do not come to class if you are sick or even think you might be sick. We will continue to follow the
campus guidelines as updated on https://returntolearn.ucsd.edu/ .

Please reach out (minnes@ucsd.edu or dgrier@ucsd.edu) if you need support with extenuating circumstances.

CC BY-NC-SA 2.0 Version August 7, 2024 (1)

https://basicneeds.ucsd.edu/
https://www.facebook.com/tritonfoodpantry/
https://mutualaiducsd.wordpress.com/
http://caps.ucsd.edu
http://ophd.ucsd.edu
http://care.ucsd.edu
https://creativecommons.org/licenses/by-nc-sa/2.0/

Introductions

Class website: https://canvas.ucsd.edu/courses/45073

Instructor for A00: Prof. Mia Minnes ”Minnes” rhymes with Guinness, minnes@ucsd.edu, http://cseweb.ucsd.edu/ minnes

Instructor for B00: Prof. Daniel Grier, dgrier@ucsd.edu, http://danielgrier.com/

Our team: Two instructors + four TAs and nine tutors + all of you

Fill in contact info for students around you, if you’d like:

On a typical week: MWF Lectures + review quizzes, Tu Homework due, WF Discussion. Office hours
(hosted by instructors and TAs and tutors, where you can come to talk about course concepts and ask for
help as you work through sample problems) and Q+A on Piazza available throughout the week. All dates
are on Canvas (click for link) and details are on the Syllabus page.

CC BY-NC-SA 2.0 Version August 7, 2024 (2)

https://canvas.ucsd.edu/courses/45073
http://cseweb.ucsd.edu/~minnes
http://danielgrier.com/
https://canvas.ucsd.edu/
https://canvas.ucsd.edu/courses/45073
https://creativecommons.org/licenses/by-nc-sa/2.0/

Welcome to CSE 105: Introduction to Theory of Computation in Spring 2023!

CSE 105’s Big Questions

• What problems are computers capable of solving?

• What resources are needed to solve a problem?

• Are some problems harder than others?

In this context, a problem is defined as: “Making a decision or computing a value based on some input”

Consider the following problems:

• Find a file on your computer

• Determine if your code will compile

• Find a run-time error in your code

• Certify that your system is un-hackable

Which of these is hardest?

In Computer Science, we operationalize “hardest” as “requires most resources”, where resources might be
memory, time, parallelism, randomness, power, etc.

To be able to compare “hardness” of problems, we use a consistent description of problems

Input: String

Output: Yes/ No, where Yes means that the input string matches the pattern or property described by
the problem.

CC BY-NC-SA 2.0 Version August 7, 2024 (3)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Monday

We will use vocabulary that should be familiar from your discrete math and introduction to proofs classes.
Some of the notation conventions may be a bit different: we will use the notation from this class’ textbook1.

Write out in words the meaning of the symbols below:

{a, b, c}

|{a, b, a}| = 2

|aba| = 3

(a, 3, 2, b, b)

Term Typical symbol Meaning

Alphabet Σ, Γ A non-empty finite set
Symbol over Σ σ, b, x An element of the alphabet Σ
String over Σ u, v, w A finite list of symbols from Σ
The set of all strings over Σ Σ∗ The collection of all possible strings formed from symbols

from Σ
(Some) language over Σ L (Some) set of strings over Σ
Empty string ε The string of length 0
Empty set ∅ The empty language
The power set of a set X P(X) The set of all subsets of X
Natural numbers N The set of positive integers
Finite set The empty set or a set whose distinct elements can be

counted by a natural number
Infinite set A set that is not finite.

Pages 3, 4, 6, 13, 14, 53

1Page references are to the 3rd edition (International) of Sipser’s Introduction to the Theory of Computation, available
through various sources for under $30. You may be able to opt in to purchase a digital copy through Canvas. Copies of
the book are also available for those who can’t access the book to borrow from the course instructor, while supplies last
(minnes@eng.ucsd.edu)

CC BY-NC-SA 2.0 Version August 7, 2024 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Term Notation Meaning

Reverse of a string w wR write w in the opposite order, if w = w1 · · ·wn then
wR = wn · · ·w1. Note: ε

R = ε
Concatenating strings x and y xy take x = x1 · · ·xm, y = y1 · · · yn and form xy =

x1 · · ·xmy1 · · · yn
String z is a substring of string w there are strings u, v such that w = uzv
String x is a prefix of string y there is a string z such that y = xz
String x is a proper prefix of string y x is a prefix of y and x ̸= y
Shortlex order, also known as string
order over alphabet Σ

Order strings over Σ first by length and then according
to the dictionary order, assuming symbols in Σ have
an ordering.

Pages 13, 14

Circle the correct choice:

A string over an alphabet Σ is an element of Σ∗ OR a subset of Σ∗.

A language over an alphabet Σ is an element of Σ∗ OR a subset of Σ∗.

Extra examples for practice:

With Σ1 = {0, 1} and Σ2 = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z} and Γ = {0, 1, x, y, z}

An example of a string of length 3 over Σ1 is

An example of a string of length 1 over Σ2 is

The number of distinct strings of length 2 over Γ is

An example of a language over Σ1 of size 1 is

An example of an infinite language over Σ1 is

An example of a finite language over Γ is

True or False: ε ∈ Σ1

True or False: ε is a string over Σ1

True or False: ε is a language over Σ1

True or False: ε is a prefix of some string over Σ1

True or False: There is a string over Σ1 that is a proper prefix of ε

The first five strings over Σ1 in string order, using the ordering 0 < 1:

The first five strings over Σ2 in string order, using the usual alphabetical ordering for single letters:

CC BY-NC-SA 2.0 Version August 7, 2024 (5)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review: Week 1 Monday

1. Please complete the beginning of the quarter survey linked from our #FinAid Assignment on Canvas
https://canvas.ucsd.edu/courses/45073/assignments/609253?wrap=1

2. We want you to be familiar with class policies and procedures so you are ready to have a successful
quarter. Please take a look at the syllabus on our class website https://canvas.ucsd.edu/courses/45073
and answer the questions about it on Gradescope.

A summary of the terminology we will use is on page 16 in the textbook.

Pre class reading for next time: Example 1.51, Definition 1.52

Notice: we are jumping to Section 1.3 Regular Expressions and then will come back to Section 1.1 Finite
Automata on Friday.

CC BY-NC-SA 2.0 Version August 7, 2024 (6)

https://canvas.ucsd.edu/courses/45073/assignments/609253
https://creativecommons.org/licenses/by-nc-sa/2.0/

Week 1 Wednesday

Our motivation in studying sets of strings is that they can be used to encode problems. To calibrate how
difficult a problem is to solve, we describe how complicated the set of strings that encodes it is. How do we
define sets of strings?

How would you describe the language that has no elements at all?

How would you describe the language that has all strings over {0, 1} as its elements?

CC BY-NC-SA 2.0 Version August 7, 2024 (7)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Definition 1.52: A regular expression over alphabet Σ is a syntactic expression that can describe a
language over Σ. The collection of all regular expressions is defined recursively:

Basis steps of recursive definition

a is a regular expression, for a ∈ Σ

ε is a regular expression

∅ is a regular expression

Recursive steps of recursive definition

(R1 ∪R2) is a regular expression when R1, R2 are regular expressions

(R1 ◦R2) is a regular expression when R1, R2 are regular expressions

(R∗
1) is a regular expression when R1 is a regular expression

The semantics (or meaning) of the syntactic regular expression is the language described by the regular
expression. The function that assigns a language to a regular expression over Σ is defined recursively,
using familiar set operations:

Basis steps of recursive definition

The language described by a, for a ∈ Σ, is {a} and we write L(a) = {a}
The language described by ε is {ε} and we write L(ε) = {ε}
The language described by ∅ is {} and we write L(∅) = ∅.

Recursive steps of recursive definition

When R1, R2 are regular expressions, the language described by the regular expression
(R1 ∪R2) is the union of the languages described by R1 and R2, and we write

L((R1 ∪R2)) = L(R1) ∪ L(R2) = {w | w ∈ L(R1) ∨ w ∈ L(R2)}

When R1, R2 are regular expressions, the language described by the regular expression
(R1 ◦R2) is the concatenation of the languages described by R1 and R2, and we write

L((R1 ◦R2)) = L(R1) ◦ L(R2) = {uv | u ∈ L(R1) ∧ v ∈ L(R2)}

When R1 is a regular expression, the language described by the regular expression (R∗
1) is

the Kleene star of the language described by R1 and we write

L((R∗
1)) = (L(R1))

∗ = {w1 · · ·wk | k ≥ 0 and each wi ∈ L(R1)}

For the following examples assume the alphabet is Σ1 = {0, 1}:

The language described by the regular expression 0 is L(0) = {0}

The language described by the regular expression 1 is L(1) = {1}

The language described by the regular expression ε is L(ε) = {ε}

CC BY-NC-SA 2.0 Version August 7, 2024 (8)

https://creativecommons.org/licenses/by-nc-sa/2.0/

The language described by the regular expression ∅ is L(∅) = ∅

The language described by the regular expression ((0 ∪ 1) ∪ 1) is L(((0 ∪ 1) ∪ 1)) =

The language described by the regular expression 1+ is L((1)+) =

The language described by the regular expression Σ∗
11 is L(Σ∗

11) =

The language described by the regular expression (Σ1Σ1Σ1Σ1Σ1)
∗ is L((Σ1Σ1Σ1Σ1Σ1)

∗) =

A regular expression that describes the language {00, 01, 10, 11} is

A regular expression that describes the language {0n1 | n is even} is

Shorthand and conventions

Assuming Σ is the alphabet, we use the following conventions
Σ regular expression describing language consisting of all strings of length 1 over Σ
∗ then ◦ then ∪ precedence order, unless parentheses are used to change it
R1R2 shorthand for R1 ◦R2 (concatenation symbol is implicit)
R+ shorthand for R∗ ◦R
Rk shorthand for R concatenated with itself k times, where k is a natural number
Pages 63 - 65

CC BY-NC-SA 2.0 Version August 7, 2024 (9)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Caution: many programming languages that support regular expressions build in functionality
that is more powerful than the “pure” definition of regular expressions given here.

Regular expressions are everywhere (once you start looking for them).

Software tools and languages often have built-in support for regular expressions to describe patterns that
we want to match (e.g. Excel/ Sheets, grep, Perl, python, Java, Ruby).

Under the hood, the first phase of compilers is to transform the strings we write in code to tokens
(keywords, operators, identifiers, literals). Compilers use regular expressions to describe the sets of strings
that can be used for each token type.

Next time: we’ll start to see how to build machines that decide whether strings match the pattern described
by a regular expression.

Extra examples for practice:

Which regular expression(s) below describe a language that includes the string a as an element?

a∗b∗

a(ba)∗b

a∗ ∪ b∗

(aaa)∗

(ε ∪ a)b

CC BY-NC-SA 2.0 Version August 7, 2024 (10)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review: Week 1 Wednesday

Please complete the review quiz questions on Gradescope about strings, languages, and regular expressions.

Recall: Review quizzes based on class material are assigned each day. These quizzes will help you track
and confirm your understanding of the concepts and examples we work in class. Quizzes can be submitted
on Gradescope as many times (with no penalty) as you like until the quiz deadline: the three quizzes each
week are all due on Friday (with no penalty late submission open until Sunday).

The definition of the union, concatenation, and star operations for languages is given as Definition 1.23 on
page 44 and a useful example is Example 1.24.

Pre class reading for next time: Figure 1.4, Definition 1.5

Notice: On Friday we are going back to the start of Chapter 1 and will be discussing finite automata and
their computations.

CC BY-NC-SA 2.0 Version August 7, 2024 (11)

http://gradescope.com
https://creativecommons.org/licenses/by-nc-sa/2.0/

Week 1 Friday

Review: Determine whether each statement below about regular expressions over the alphabet {a, b, c} is
true or false:

True or False: a ∈ L((a ∪ b) ∪ c)

True or False: ab ∈ L((a ∪ b)∗)

True or False: ba ∈ L(a∗b∗)

True or False: ε ∈ L(a ∪ b ∪ c)

True or False: ε ∈ L((a ∪ b)∗)

True or False: ε ∈ L(a∗b∗)

From the pre-class reading, pages 34-36: A deterministic finite automaton (DFA) is specified by
M = (Q,Σ, δ, q0, F). This 5-tuple is called the formal definition of the DFA. The DFA can also be
represented by its state diagram: with nodes for the state, labelled edges specifying the transition function,
and decorations on nodes denoting the start and accept states.

Finite set of states Q can be labelled by any collection of distinct names. Often we use default
state labels q0, q1, . . .

The alphabet Σ determines the possible inputs to the automaton. Each input to the automaton
is a string over Σ, and the automaton “processes” the input one symbol (or character) at a time.

The transition function δ gives the next state of the DFA based on the current state of the
machine and on the next input symbol.

The start state q0 is an element of Q. Each computation of the machine starts at the start state.

The accept (final) states F form a subset of the states of the DFA, F ⊆ Q. These states are
used to flag if the machine accepts or rejects an input string.

The computation of a machine on an input string is a sequence of states in the machine, starting
with the start state, determined by transitions of the machine as it reads successive input
symbols.

The DFA M accepts the given input string exactly when the computation of M on the input
string ends in an accept state. M rejects the given input string exactly when the computation
of M on the input string ends in a nonaccept state, that is, a state that is not in F .

The language of M , L(M), is defined as the set of all strings that are each accepted by the
machine M . Each string that is rejected by M is not in L(M). The language of M is also called
the language recognized by M .

CC BY-NC-SA 2.0 Version August 7, 2024 (12)

https://creativecommons.org/licenses/by-nc-sa/2.0/

What is finite about all deterministic finite automata? (Select all that apply)

□ The size of the machine (number of states, number of arrows)

□ The number of strings that are accepted by the machine

□ The length of each computation of the machine

The formal definition of this DFA is

Classify each string a, aa, ab, ba, bb, ε as accepted by the DFA or rejected by the DFA.

Why are these the only two options?

The language recognized by this DFA is

CC BY-NC-SA 2.0 Version August 7, 2024 (13)

https://creativecommons.org/licenses/by-nc-sa/2.0/

The language recognized by this DFA is

The language recognized by this DFA is

CC BY-NC-SA 2.0 Version August 7, 2024 (14)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review: Week 1 Friday

Please complete the review quiz questions on Gradescope about DFA and the strings they accept and reject.

The definition of the union, concatenation, and star operations for languages is given as Definition 1.23 on
page 44 and a useful example is Example 1.24.

The first homework assignment for CSE 105 this quarter is due next week. Find it on the class website: in
the Calendar section of the website, click on the link under ”Due Dates” for Week 2, or find the detailed
assignment in the Assignments section of the website. Due: 4/11/23 at 5pm (no penalty late submission
until 8am next morning)

We encourage you to work on homework in groups of up to three CSE 105 classmates. To find group
members: reach out to people sitting around you in class, in discussion section, or during office hours. The
pre-survey also asks if you want help finding group members: the CSE 105 instructional team can help you
connect with other students. Working within the campus safety guidelines, you may choose to meet with
your group mates in person or remotely. We highly recommend meeting synchronously so that you can
work through the homework problems *together*.

Pre class reading for next time: pages 41-43 (figures 1.18, 1.19, 1.20)

CC BY-NC-SA 2.0 Version August 7, 2024 (15)

http://gradescope.com
https://creativecommons.org/licenses/by-nc-sa/2.0/

