
HW7 : Undecidability, Co-Recognizability, and Mapping
Reductions

CSE105Sp23

Due: June 6th at 5pm (no penalty late submission until 8am next morning),
via Gradescope

In this assignment: You will use general constructions and specific machines to explore the
classes of recognizable, decidable, and undecidable languages. You will use computable functions
to relate the difficulty levels of languages via mapping reduction.

Resources : To review the topics you are working with for this assignment, see the class material
from Week 7 through Week 9. We will post frequently asked questions and our answers to them
in a pinned Piazza post.

Reading and extra practice problems : Chapter 5 exercises 5.4, 5.5, 5.6, 5.7. Chapter 5 problems
5.10, 5.11, 5.16, 5.18.

Key Concepts: Computational problems, diagonalization, undecidability, unrecognizability, com-
putable function, mapping reduction.

For all HW assignments: Weekly homework may be done individually or in groups of up
to 3 students. You may switch HW partners for different HW assignments. The lowest HW
score will not be included in your overall HW average. Please ensure your name(s) and PID(s)
are clearly visible on the first page of your homework submission and then upload the PDF to
Gradescope. If working in a group, submit only one submission per group: one partner uploads
the submission through their Gradescope account and then adds the other group member(s) to
the Gradescope submission by selecting their name(s) in the “Add Group Members” dialog box.
You will need to re-add your group member(s) every time you resubmit a new version of your
assignment. Each homework question will be graded either for correctness (including clear and
precise explanations and justifications of all answers) or fair effort completeness. You may only
collaborate on HW with CSE 105 students in your group; if your group has questions about
a HW problem, you may ask in drop-in help hours or post a private post (visible only to the
Instructors) on Piazza.

All submitted homework for this class must be typed. You can use a word processing editor if

Copyright Daniel Grier / Mia Minnes, 2023, Version August 7, 2024 (1)

you like (Microsoft Word, Open Office, Notepad, Vim, Google Docs, etc.) but you might find
it useful to take this opportunity to learn LaTeX. LaTeX is a markup language used widely in
computer science and mathematics. The homework assignments are typed using LaTeX and you
can use the source files as templates for typesetting your solutions. To generate state diagrams of
machines, we recommend using Flap.js or JFLAP. Photographs of clearly hand-drawn diagrams
may also be used. We recommend that you submit early drafts to Gradescope so that in case of
any technical difficulties, at least some of your work is present. You may update your submission
as many times as you’d like up to the deadline.

Integrity reminders

• Problems should be solved together, not divided up between the partners. The homework
is designed to give you practice with the main concepts and techniques of the course, while
getting to know and learn from your classmates.

• You may not collaborate on homework with anyone other than your group members. You
may ask questions about the homework in office hours (of the instructor, TAs, and/or
tutors) and on Piazza (as private notes viewable only to the Instructors). You cannot
use any online resources about the course content other than the class material from this
quarter – this is primarily to ensure that we all use consistent notation and definitions
(aligned with the textbook) and also to protect the learning experience you will have when
the ‘aha’ moments of solving the problem authentically happen.

• Do not share written solutions or partial solutions for homework with other students in
the class who are not in your group. Doing so would dilute their learning experience and
detract from their success in the class.

You will submit this assignment via Gradescope (https://www.gradescope.com) in the assign-
ment called “hw7CSE105Sp23”.

Assigned questions

1. Properties of mapping reductions (20 points):
In the review quizzes, we saw that mapping reductions are transitive and are not symmetric.
That is, if A ≤m B and B ≤m C, then A ≤m C and there are sets A,B where A ≤m B
but it is not the case that B ≤m A.

In this question, we’ll explore other properties of mapping reductions. We fix the alphabet
Σ and all sets we consider are languages over this alphabet.

For each of the following statements, determine if it is true or false. Clearly label your
choice by starting your solution with True or False and then provide a brief (3-4 sentences
or so) justification for your answer.

Copyright Daniel Grier / Mia Minnes, 2023, Version August 7, 2024 (2)

https://www.gradescope.com

(a) (Graded for correctness) 1 Mapping reductions are *not* related to subset inclusion.
That is, there are example sets A,B,C,D where A ⊆ B and A ≤m B and C ̸⊆ D
and C ≤m D. Note: the notation C ̸⊆ D means that C is not a subset of D. That is,
there is an element of C that is not an element of D.

(b) (Graded for correctness) For every decidable language L, there is a regular language
R such that L ≤m R.

(c) (Graded for correctness) Mapping reducibility is preserved under complement. That
is, for all sets A and B, if A ≤m B, then A ≤m B.

(d) (Graded for correctness) A ≤m B for every decidable language A and every co-
recognizable language B. Note: the definition of co-recognizable is from Week 8 and
is: A language L over an alphabet Σ is called co-recognizable if its complement,
defined as Σ∗ \ L = {x ∈ Σ∗ | x /∈ L}, is Turing-recognizable.

2. What’s wrong with these reductions? (20 points):
Suppose your friends are practicing coming up with mapping reductions A ≤m B and their
witnessing functions f : Σ∗ → Σ∗. For each of the following attempts, determine if it is has
error(s) or is correct. Do so by labelling each attempt with all and only the labels below
that apply, and justifying this labelling.

• Error Type 1: The given function can’t witness the claimed mapping reduction because
there exists an x ∈ A such that f(x) ̸∈ B.

• Error Type 2: The given function can’t witness the claimed mapping reduction because
there exists an x ̸∈ A such that f(x) ∈ B.

• Error Type 3: The given function can’t witness the claimed mapping reduction because
the specified function is not computable.

• Correct: The claimed mapping reduction is true and is witnessed by the given function.

Clearly present your answer by first listing all the relevant labels from above and then
providing a brief (3-4 sentences or so) justification for each of those labels.

(a) (Graded for correctness) ATM ≤m HALTTM and

f(x) =

⟨ qaccstart ⟩ if x = ⟨M,w⟩ for a Turing machine M and string w

and w ∈ L(M)

⟨ q0start 0, 1, → R ⟩ otherwise

(b) (Graded for correctness) {ww | w ∈ {0, 1}∗} ≤m {w | w ∈ {0, 1}∗} and

f(x) =

{
w if x = ww for a string w over {0, 1}
ε otherwise

1This means your solution will be evaluated not only on the correctness of your answers, but on your ability
to present your ideas clearly and logically. You should explain how you arrived at your conclusions, using
mathematically sound reasoning. Whether you use formal proof techniques or write a more informal argument
for why something is true, your answers should always be well-supported. Your goal should be to convince the
reader that your results and methods are sound.

Copyright Daniel Grier / Mia Minnes, 2023, Version August 7, 2024 (3)

(c) (Graded for correctness) EQTM ≤m ATM with

f(x) =

⟨ qaccstart , Mw⟩ if x = ⟨M,w⟩ for a Turing machine M and string w

ε otherwise.

Where for each Turing machine M , we define

Mw = “On input y

1. Simulate M on w.

2. If it accepts, accept.

3. If it rejects, reject.”

You may assume that ε is never a valid encoding and that encodings of pairs of Turing
machines are never the same as encodings of a Turing machine and an input string
(i.e., ⟨M1,M2⟩ ≠ ⟨M3, w⟩).

3. Computational histories (10 points):
At any point in the computation of a Turing machine, we can record what is going on by
(metaphorically) taking a “snapshot”. We want this snapshot to contain all the information
needed to simulate the rest of the computation. In particular, the snapshot encodes the

• Tape contents: Although the tape is infinite, at any specific point in a computation,
only finitely many cells have been used. These are the only relevant tape contents to
be encoded.

• Head position: An index to which position on the tape the head is currently pointing.

• State: An index to which state in the finite control the computation is currently at.

Notice that much like the encoding ⟨M⟩ of a Turing machine M , we can encode all of this
snapshot information in a single string called a configuration (usually denoted by the letter
C). In the same spirit of getter functions for components of encodings, all of the relevant
information can effectively be extracted from the configuration. More formally, there is a
computable function which computes each of the tape contents, head position, and state
given a configuration as input. See Sipser Figure 3.4 (and surrounding discussion) for an
explicit example of a configuration.

A computational history for Turing machine M on input w is sequence of configurations
C1, C2, . . . , Ck such that configuration Ci+1 results from taking one step in the Turing
machine computation corresponding to Ci (in other words, one application of the transition
function). Additionally, C1 is the starting configuration, corresponding to the tape that has
the characters w on the leftmost |w|-many cells of the tape, the tape head at the leftmost
position, and the current state being the starting state of the Turing machine. We say that
a computational history is accepting if the final configuration in the sequence Ck has the
current state being the accept state of the Turing machine.

Copyright Daniel Grier / Mia Minnes, 2023, Version August 7, 2024 (4)

Let’s suppose we can describe both the encodings of Turing machines and configurations us-
ing the alphabet Σ = {0, 1}. That is, ⟨M⟩ ∈ Σ∗ and C ∈ Σ∗ for any Turing machine M and
configuration of the Turing machine C. We define the language of accepting computational
histories over the alphabet Γ = {0, 1, 2}:

H := {⟨M⟩2⟨w⟩2C12 · · · 2Ck | M is a Turing machine, w is a string,

C1, . . . , Ck is the computational history of M on w

and is accepting}

That is, strings in the language H start with an encoding of some Turing machine M ,
followed by an encoding of some string w, followed by an accepting computational history
of M on input w. There is a 2 symbol between each of these components to serve as a
delimiter. To be clear, each of these encodings is over the alphabet {0, 1}, but you may
also assume that it’s possible to decide whether or not a particular bit string is an encoding
of a Turing machine, a configuration, or neither.

(a) (Graded for correctness) Give a high-level description for a Turing machine that de-
cides H and justify why it works. Namely, prove that the Turing machine you define
halts for each input and that it accepts an arbitrary string if and only if that string
is in H.

(b) (Graded for completeness) 2 Prove that Substring(H) is undecidable by showing a
mapping reduction from ATM. That is, you will prove that ATM ≤m Substring(H)
by giving a witnessing function. Recall that for any language K ⊆ Γ∗, we define

Substring(K) := {w ∈ Γ∗ | there exist a, b ∈ Γ∗ such that awb ∈ K}.

Combining parts (a) and (b), notice that this implies that the class of decidable
languages is not closed under the Substring operation.

2This means you will get full credit so long as your submission demonstrates honest effort to answer the
question. You will not be penalized for incorrect answers. To demonstrate your honest effort in answering the
question, we ask that you include your attempt to answer *each* part of the question. If you get stuck with your
attempt, you can still demonstrate your effort by explaining where you got stuck and what you did to try to get
unstuck.

Copyright Daniel Grier / Mia Minnes, 2023, Version August 7, 2024 (5)

