
HW1 : Regular Expressions and Finite Automata

CSE105Sp23

Due: April 11th at 5pm (no penalty late submission until 8am next morning),
via Gradescope

In this assignment,

You will practice reading and applying the definitions of alphabets, strings, languages, Kleene
star, and regular expressions. You will use regular expressions and relate them to languages
and finite automata. You will use precise notation to formally define the state diagram of finite
automata, and you will use clear English to describe computations of finite automata informally.

Resources: To review the topics for this assignment, see the class material from Week 1. We
will post frequently asked questions and our answers to them in a pinned Piazza post.

Reading and extra practice problems: Sipser Section 0, 1.3, 1.1. Chapter 1 exercises 1.1,
1.2, 1.3, 1.18, 1.23.

For all HW assignments: Weekly homework may be done individually or in groups of up
to 3 students. You may switch HW partners for different HW assignments. The lowest HW
score will not be included in your overall HW average. Please ensure your name(s) and PID(s)
are clearly visible on the first page of your homework submission and then upload the PDF to
Gradescope. If working in a group, submit only one submission per group: one partner uploads
the submission through their Gradescope account and then adds the other group member(s) to
the Gradescope submission by selecting their name(s) in the “Add Group Members” dialog box.
You will need to re-add your group member(s) every time you resubmit a new version of your
assignment. Each homework question will be graded either for correctness (including clear and
precise explanations and justifications of all answers) or fair effort completeness. You may only
collaborate on HW with CSE 105 students in your group; if your group has questions about
a HW problem, you may ask in drop-in help hours or post a private post (visible only to the
Instructors) on Piazza.

All submitted homework for this class must be typed. You can use a word processing editor if
you like (Microsoft Word, Open Office, Notepad, Vim, Google Docs, etc.) but you might find
it useful to take this opportunity to learn LaTeX. LaTeX is a markup language used widely in
computer science and mathematics. The homework assignments are typed using LaTeX and you

Copyright Daniel Grier / Mia Minnes, 2023, Version August 7, 2024 (1)



can use the source files as templates for typesetting your solutions. To generate state diagrams of
machines, we recommend using Flap.js or JFLAP. Photographs of clearly hand-drawn diagrams
may also be used. We recommend that you submit early drafts to Gradescope so that in case of
any technical difficulties, at least some of your work is present. You may update your submission
as many times as you’d like up to the deadline.

Integrity reminders

• Problems should be solved together, not divided up between the partners. The homework
is designed to give you practice with the main concepts and techniques of the course, while
getting to know and learn from your classmates.

• You may not collaborate on homework with anyone other than your group members. You
may ask questions about the homework in office hours (of the instructor, TAs, and/or
tutors) and on Piazza (as private notes viewable only to the Instructors). You cannot
use any online resources about the course content other than the class material from this
quarter – this is primarily to ensure that we all use consistent notation and definitions
(aligned with the textbook) and also to protect the learning experience you will have when
the ‘aha’ moments of solving the problem authentically happen.

• Do not share written solutions or partial solutions for homework with other students in
the class who are not in your group. Doing so would dilute their learning experience and
detract from their success in the class.

You will submit this assignment via Gradescope (https://www.gradescope.com) in the assign-
ment called “hw1CSE105Sp23”.

Assigned questions

1. Functions over sets of strings (17 points):
For this question, fix the alphabets Σ = {0, 1} and Γ = {0, 1, 2}.
Whenever K is a set of strings over Γ and L is a set of strings over Σ, we can use the following
rules to define associated sets of strings:

Substring(K) := {w ∈ Γ∗ | there exist a, b ∈ Γ∗ such that awb ∈ K}
Rep(L) := {w ∈ Γ∗ | between every pair of successive 2s in w is a string in L}

= {w ∈ Γ∗ | for all v ∈ Σ∗ if 2v2 ∈ Substring({w}), then v ∈ L}

Note: Formally, Substring and Rep are functions whose domains and codomains are specified
as

Substring : P(Γ∗) → P(Γ∗)

and
Rep : P(Σ∗) → P(Γ∗)
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In other words, Substring maps sets of strings with characters {0, 1, 2} to associated sets
of strings with characters {0, 1, 2}; and Rep maps sets of strings with characters in {0, 1} to
associated sets of strings with characters in {0, 1, 2}.

(a) (Graded for correctness) 1 Consider w = 0120 (which is a string in Γ∗). List every element
of the set Substring({w}). In other words, fill in the blank

Substring({w}) = { }

Briefly justify your answer by referring back to the relevant definitions.

Not graded, but good to think about: Why do we need the curly braces—“{” and “}”—around
w for the input to Substring?

(b) (Graded for correctness) Specify an example language A over Γ such that A ̸= Γ∗ and yet
Substring(A) = Γ∗, or explain why there is no such example. A complete solution will
include either (1) a precise and clear description of your example language A and a precise
and clear description of the result of computing Substring(A) using relevant definitions to
justify this description and to justify the set equality with Γ∗, or (2) a sufficiently general and
correct argument why there is no such example, referring back to the relevant definitions.

(c) (Graded for completeness) 2 Define the language B to be the language over Σ described by
the regular expression

Σ∗1Σ∗

In plain English, we might explain that B is the set of all strings of 0s and 1s that contain
a 1. Give a plain English explanation for the set of strings Rep(B).

(d) (Graded for correctness) Prove/disprove: For every finite language L over Σ, Rep(L) is also
a finite set of strings. A complete answer will either give a general argument starting with
an arbitrary finite language and proving that the result of applying Rep is also finite, or will
give a counterexample (which is a specific example of a finite language L for which applying
Rep gives an infinite language, with justification referring back to the relevant definitions).

Note: A finite language is a set of finitely many strings. This includes the possibility that
L is the empty set!

(e) (Graded for completeness) Write a template for a regular expression that describes Rep(L)
when L is described by a regular expression R. You may use union, concatenation, Kleene
star, and Σ, Γ, and R. (We’re using the shorthand for regular expressions describing
alphabets from page 64.)

1This means your solution will be evaluated not only on the correctness of your answers, but on your ability
to present your ideas clearly and logically. You should explain how you arrived at your conclusions, using
mathematically sound reasoning. Whether you use formal proof techniques or write a more informal argument
for why something is true, your answers should always be well-supported. Your goal should be to convince the
reader that your results and methods are sound.

2This means you will get full credit so long as your submission demonstrates honest effort to answer the
question. You will not be penalized for incorrect answers. To demonstrate your honest effort in answering the
question, we ask that you include your attempt to answer *each* part of the question. If you get stuck with your
attempt, you can still demonstrate your effort by explaining where you got stuck and what you did to try to get
unstuck.
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2. Deciphering regular expressions (22 points):
For this question, let’s fix the regular expression over the alphabet {0, 1}

R = 0∗(1 ∪ 10)∗

For each choice of strings of length 3, a, b, c ∈ {0, 1}3 we can define the regular expression:

Xa,b,c = 0(a ∪ b ∪ c)∗

(a) (Graded for completeness) Give a plain English explanation for the language described by
the regular expression R. This continues a theme from Problem 1—before trying to prove
formal statements about a specific regular expression, it’s often good to try to translate it
into a form that is more easy to reason about. Typically speaking, the shorter and more
concise your plain English description is, the more useful it will be in reasoning about the
language.

(b) (Graded for correctness) Suppose a = 000, b = 001, c = 011 so

Xa,b,c = 0(000 ∪ 001 ∪ 011)∗

Show that L(R) ̸⊆ L(Xa,b,c) by giving some string in L(R) which is not in L(Xa,b,c), and
justifying this choice referring back to relevant definitions.

(c) (Graded for correctness) More generally, prove that

L(R) ̸⊆ L(Xa,b,c)

for all possible strings a, b, c ∈ {0, 1}3. Hint: What are the possible lengths of strings in
L(R) (and why does this help)?

(d) (Graded for correctness) Give a specific example of three distinct strings a, b, c ∈ {0, 1, 2}3
such that

L(Xa,b,c) ⊆ L(R)

Briefly justify your answer by explaining how an arbitrary element of L(Xa,b,c) is guaranteed
to be an element of L(R).

(e) (Graded for correctness) Give a specific example of three distinct strings a, b, c ∈ {0, 1, 2}3
such that

L(Xa,b,c) ̸⊆ L(R)

Briefly justify your answer by giving a counterexample string that is in L(Xa,b,c) and is not
in L(R) (and explaining why using relevant definitions).

3. The right transition function can make or break a DFA (6 points):
Consider the finite automaton (Q,Σ, δ, q0, F ) depicted below

q0start q1 q2

0

1 0

1

1

0
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where Q = {q0, q1, q2}, Σ = {0, 1}, and F = {q0}.

(a) (Graded for completeness) Find and fix the mistake in the following symbolic description of
the transition function δ : Q× Σ → Q: for each j ∈ {0, 1}

δ(q0, j) = qj δ(q1, j) = q1−j δ(q2, j) = q1+j

(b) (Graded for correctness) Keeping the same set of statesQ = {q0, q1, q2}, alphabet Σ = {0, 1},
starting state q0, and set of accepting states F = {q0}, change the transition function δ
so that the resulting finite automaton recognizes the language described by the regular
expression

0∗ ∪ Σ∗1000∗

Briefly justify why the resulting finite automaton works by describing the role of each state
with your new transition function and relating it to a plain English description of the
language described by the regular expression.

Note: with regular expressions ∗ binds more tightly than concatenation so 1000∗ = (100)(0∗).

(Challenge question, not graded) There is a beautiful plain English description of the language
recognized by the finite automaton with the state diagram depicted at the start of Problem 3.
What is it?

4. Being precise with terminology (5 points):
For each of the following statements, determine if it is true, false, or if the question doesn’t even
make sense (because the statement isn’t well formed or doesn’t use terms in ways consistent with
definitions from class).

(a) (Graded for completeness) The empty string is in every language.

(b) (Graded for completeness) Σ∗ is a language.

(c) (Graded for completeness) Every language is a regular expression.

(d) (Graded for completeness) Alphabets are infinite.

(e) (Graded for completeness) There is a (finite) number k ∈ N such that every DFA has fewer
than k states.
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