
regular-languages

Week4 monday

Recap so far: In DFA, the only memory available is in the states. Automata can only “remember” finitely far
in the past and finitely much information, because they can have only finitely many states. If a computation
path of a DFA visits the same state more than once, the machine can’t tell the difference between the first
time and future times it visits this state. Thus, if a DFA accepts one long string, then it must accept
(infinitely) many similar strings.

Definition A positive integer p is a pumping length of a language L over Σ means that, for each string
s ∈ Σ∗, if |s| ≥ p and s ∈ L, then there are strings x, y, z such that

s = xyz

and
|y| > 0, for each i ≥ 0, xyiz ∈ L, and |xy| ≤ p.

Negation: A positive integer p is not a pumping length of a language L over Σ iff

∃s
(
|s| ≥ p ∧ s ∈ L ∧ ∀x∀y∀z

(
(s = xyz ∧ |y| > 0 ∧ |xy| ≤ p) → ∃i(i ≥ 0 ∧ xyiz /∈ L)

))
Informally:

Restating Pumping Lemma: If L is a regular language, then it has a pumping length.

Contrapositive: If L has no pumping length, then it is nonregular.

The Pumping Lemma cannot be used to prove that a language is regular.

The Pumping Lemma can be used to prove that a language is not regular.

Extra practice: Exercise 1.49 in the book.

Proof strategy: To prove that a language L is not regular,

• Consider an arbitrary positive integer p

• Prove that p is not a pumping length for L

• Conclude that L does not have any pumping length, and therefore it is not regular.

CC BY-NC-SA 2.0 Version August 7, 2024 (1)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: Σ = {0, 1}, L = {0n1n | n ≥ 0}.

Fix p an arbitrary positive integer. List strings that are in L and have length greater than or equal to p:

Pick s =

Suppose s = xyz with |xy| ≤ p and |y| > 0.

Then when i = , xyiz =

CC BY-NC-SA 2.0 Version August 7, 2024 (2)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: Σ = {0, 1}, L = {wwR | w ∈ {0, 1}∗}.

Fix p an arbitrary positive integer. List strings that are in L and have length greater than or equal to p:

Pick s =

Suppose s = xyz with |xy| ≤ p and |y| > 0.

Then when i = , xyiz =

Example: Σ = {0, 1}, L = {0j1k | j ≥ k ≥ 0}.

Fix p an arbitrary positive integer. List strings that are in L and have length greater than or equal to p:

Pick s =

Suppose s = xyz with |xy| ≤ p and |y| > 0.

Then when i = , xyiz =

Example: Σ = {0, 1}, L = {0n1m0n | m,n ≥ 0}.

Fix p an arbitrary positive integer. List strings that are in L and have length greater than or equal to p:

Pick s =

Suppose s = xyz with |xy| ≤ p and |y| > 0.

Then when i = , xyiz =

CC BY-NC-SA 2.0 Version August 7, 2024 (3)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Extra practice:

Language s ∈ L s /∈ L Is the language regular or nonregular?

{anbn | 0 ≤ n ≤ 5}

{bnan | n ≥ 2}

{ambn | 0 ≤ m ≤ n}

{ambn | m ≥ n+ 3, n ≥ 0}

{bman | m ≥ 1, n ≥ 3}

{w ∈ {a, b}∗ | w = wR}

{wwR | w ∈ {a, b}∗}

Week4 wednesday

Regular sets are not the end of the story

• Many nice / simple / important sets are not regular

• Limitation of the finite-state automaton model: Can’t “count”, Can only remember finitely far into
the past, Can’t backtrack, Must make decisions in “real-time”

• We know actual computers are more powerful than this model...

The next model of computation. Idea: allow some memory of unbounded size. How?

• To generalize regular expressions: context-free grammars

• To generalize NFA: Pushdown automata, which is like an NFA with access to a stack: Number
of states is fixed, number of entries in stack is unbounded. At each step (1) Transition to new state
based on current state, letter read, and top letter of stack, then (2) (Possibly) push or pop a letter to
(or from) top of stack. Accept a string iff there is some sequence of states and some sequence of stack
contents which helps the PDA processes the entire input string and ends in an accepting state.

Is there a PDA that recognizes the nonregular language {0n1n | n ≥ 0}?

CC BY-NC-SA 2.0 Version August 7, 2024 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/

The PDA with state diagram above can be informally described as:

Read symbols from the input. As each 0 is read, push it onto the stack. As soon as 1s are seen,
pop a 0 off the stack for each 1 read. If the stack becomes empty and we are at the end of the
input string, accept the input. If the stack becomes empty and there are 1s left to read, or if 1s
are finished while the stack still contains 0s, or if any 0s appear in the string following 1s, reject
the input.

Trace the computation of this PDA on the input string 01.

Trace the computation of this PDA on the input string 011.

A PDA recognizing the set { } can be informally described as:

Read symbols from the input. As each 0 is read, push it onto the stack. As soon as 1s are seen,
pop a 0 off the stack for each 1 read. If the stack becomes empty and there is exactly one 1 left
to read, read that 1 and accept the input. If the stack becomes empty and there are either zero
or more than one 1s left to read, or if the 1s are finished while the stack still contains 0s, or if
any 0s appear in the input following 1s, reject the input.

Modify the state diagram below to get a PDA that implements this description:

CC BY-NC-SA 2.0 Version August 7, 2024 (5)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Definition A pushdown automaton (PDA) is specified by a 6-tuple (Q,Σ,Γ, δ, q0, F) where Q is the
finite set of states, Σ is the input alphabet, Γ is the stack alphabet,

δ : Q× Σε × Γε → P(Q× Γε)

is the transition function, q0 ∈ Q is the start state, F ⊆ Q is the set of accept states.

Draw the state diagram and give the formal definition of a PDA with Σ = Γ.

Draw the state diagram and give the formal definition of a PDA with Σ ∩ Γ = ∅.

CC BY-NC-SA 2.0 Version August 7, 2024 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Extra practice: Consider the state diagram of a PDA with input alphabet Σ and stack alphabet Γ.

Label means
a, b; c when a ∈ Σ, b ∈ Γ, c ∈ Γ

a, ε; c when a ∈ Σ, c ∈ Γ

a, b; ε when a ∈ Σ, b ∈ Γ

a, ε; ε when a ∈ Σ

How does the meaning change if a is replaced by ε?

Note: alternate notation is to replace ; with →

CC BY-NC-SA 2.0 Version August 7, 2024 (7)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week4 friday

For the PDA state diagrams below, Σ = {0, 1}.

Mathematical description of language State diagram of PDA recognizing language
Γ = {$,#}

Γ = {@, 1}

{0i1j0k | i, j, k ≥ 0}

CC BY-NC-SA 2.0 Version August 7, 2024 (8)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Big picture: PDAs were motivated by wanting to add some memory of unbounded size to NFA. How do we
accomplish a similar enhancement of regular expressions to get a syntactic model that is more expressive?

DFA, NFA, PDA: Machines process one input string at a time; the computation of a machine on its input
string reads the input from left to right.

Regular expressions: Syntactic descriptions of all strings that match a particular pattern; the language
described by a regular expression is built up recursively according to the expression’s syntax

Context-free grammars: Rules to produce one string at a time, adding characters from the middle,
beginning, or end of the final string as the derivation proceeds.

Term Typical symbol Definition

Context-free grammar
(CFG)

G G = (V,Σ, R, S)

Variables V Finite set of symbols that represent phases in production
pattern

Terminals Σ Alphabet of symbols of strings generated by CFG
V ∩ Σ = ∅

Rules R Each rule is A → u with A ∈ V and u ∈ (V ∪ Σ)∗

Start variable S Usually on LHS of first / topmost rule
Derivation Sequence of substitutions in a CFG

S =⇒ · · · =⇒ w Start with start variable, apply one rule to one occurrence
of a variable at a time

Language generated by the
CFG G

L(G) {w ∈ Σ∗ | there is derivation in G that ends in w} =
{w ∈ Σ∗ | S =⇒ ∗w}

Context-free language A language that is the language generated by some CFG
Sipser pages 102-103

Examples of context-free grammars, derivations in those grammars, and the languages gen-
erated by those grammars

G1 = ({S}, {0}, R, S) with rules

S → 0S

S → 0

In L(G1) . . .

Not in L(G1) . . .

CC BY-NC-SA 2.0 Version August 7, 2024 (9)

https://creativecommons.org/licenses/by-nc-sa/2.0/

G2 = ({S}, {0, 1}, R, S)
S → 0S | 1S | ε

In L(G2) . . .

Not in L(G2) . . .

({S, T}, {0, 1}, R, S) with rules

S → T1T1T1T

T → 0T | 1T | ε

In L(G3) . . .

Not in L(G3) . . .

CC BY-NC-SA 2.0 Version August 7, 2024 (10)

https://creativecommons.org/licenses/by-nc-sa/2.0/

G4 = ({A,B}, {0, 1}, R,A) with rules

A → 0A0 | 0A1 | 1A0 | 1A1 | 1

In L(G4) . . .

Not in L(G4) . . .

Extra practice: Is there a CFG G with L(G) = ∅?

CC BY-NC-SA 2.0 Version August 7, 2024 (11)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week3 monday

The state diagram of an NFA over {a, b} is below. The formal definition of this NFA is:

The language recognized by this NFA is:

Suppose A1, A2 are languages over an alphabet Σ. Claim: if there is a NFA N1 such that L(N1) = A1 and
NFA N2 such that L(N2) = A2, then there is another NFA, let’s call it N , such that L(N) = A1 ∪ A2.

Proof idea: Use nondeterminism to choose which of N1, N2 to run.

Formal construction: Let N1 = (Q1,Σ, δ1, q1, F1) and N2 = (Q2,Σ, δ2, q2, F2) and assume Q1 ∩ Q2 = ∅
and that q0 /∈ Q1 ∪Q2. Construct N = (Q,Σ, δ, q0, F1 ∪ F2) where

• Q =

• δ : Q× Σε → P(Q) is defined by, for q ∈ Q and a ∈ Σε:

Proof of correctness would prove that L(N) = A1 ∪ A2 by considering an arbitrary string accepted by N ,
tracing an accepting computation of N on it, and using that trace to prove the string is in at least one of
A1, A2; then, taking an arbitrary string in A1 ∪ A2 and proving that it is accepted by N . Details left for
extra practice.

CC BY-NC-SA 2.0 Version August 7, 2024 (12)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Over the alphabet {a, b}, the language L described by the regular expression Σ∗aΣ∗b

includes the strings and excludes the strings

The state diagram of a NFA recognizing L is:

Suppose A1, A2 are languages over an alphabet Σ. Claim: if there is a NFA N1 such that L(N1) = A1 and
NFA N2 such that L(N2) = A2, then there is another NFA, let’s call it N , such that L(N) = A1 ◦ A2.

Proof idea: Allow computation to move betweenN1 andN2 “spontaneously” when reach an accepting state
of N1, guessing that we’ve reached the point where the two parts of the string in the set-wise concatenation
are glued together.

Formal construction: Let N1 = (Q1,Σ, δ1, q1, F1) and N2 = (Q2,Σ, δ2, q2, F2) and assume Q1 ∩ Q2 = ∅.
Construct N = (Q,Σ, δ, q0, F) where

• Q =

• q0 =

• F =

• δ : Q× Σε → P(Q) is defined by, for q ∈ Q and a ∈ Σε:

δ((q, a)) =

δ1((q, a)) if q ∈ Q1 and q /∈ F1

δ1((q, a)) if q ∈ F1 and a ∈ Σ

δ1((q, a)) ∪ {q2} if q ∈ F1 and a = ε

δ2((q, a)) if q ∈ Q2

Proof of correctness would prove that L(N) = A1 ◦ A2 by considering an arbitrary string accepted by N ,
tracing an accepting computation of N on it, and using that trace to prove the string can be written as the
result of concatenating two strings, the first in A1 and the second in A2; then, taking an arbitrary string in
A1 ◦ A2 and proving that it is accepted by N . Details left for extra practice.

CC BY-NC-SA 2.0 Version August 7, 2024 (13)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Suppose A is a language over an alphabet Σ. Claim: if there is a NFA N such that L(N) = A, then there
is another NFA, let’s call it N ′, such that L(N ′) = A∗.

Proof idea: Add a fresh start state, which is an accept state. Add spontaneous moves from each (old)
accept state to the old start state.

Formal construction: Let N = (Q,Σ, δ, q1, F) and assume q0 /∈ Q. Construct N ′ = (Q′,Σ, δ′, q0, F
′)

where

• Q′ = Q ∪ {q0}

• F ′ = F ∪ {q0}

• δ′ : Q′ × Σε → P(Q′) is defined by, for q ∈ Q′ and a ∈ Σε:

δ′((q, a)) =

δ((q, a)) if q ∈ Q and q /∈ F

δ((q, a)) if q ∈ F and a ∈ Σ

δ((q, a)) ∪ {q1} if q ∈ F and a = ε

{q1} if q = q0 and a = ε

∅ if q = q0 and a ∈ Σ

Proof of correctness would prove that L(N ′) = A∗ by considering an arbitrary string accepted by N ′, tracing
an accepting computation of N ′ on it, and using that trace to prove the string can be written as the result
of concatenating some number of strings, each of which is in A; then, taking an arbitrary string in A∗ and
proving that it is accepted by N ′. Details left for extra practice.

Application: A state diagram for a NFA over Σ = {a, b} that recognizes L((Σ∗b)∗):

True or False: The state diagram of any DFA is also the state diagram of a NFA.

True or False: The state diagram of any NFA is also the state diagram of a DFA.

True or False: The formal definition (Q,Σ, δ, q0, F) of any DFA is also the formal definition of a NFA.

True or False: The formal definition (Q,Σ, δ, q0, F) of any NFA is also the formal definition of a DFA.

CC BY-NC-SA 2.0 Version August 7, 2024 (14)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week3 wednesday

Consider the state diagram of an NFA over {a, b}:

The language recognized by this NFA is

The state diagram of a DFA recognizing this same language is:

Suppose A is a language over an alphabet Σ. Claim: if there is a NFA N such that L(N) = A then there
is a DFA M such that L(M) = A.

Proof idea: States in M are “macro-states” – collections of states from N – that represent the set of
possible states a computation of N might be in.

Formal construction: Let N = (Q,Σ, δ, q0, F). Define

M = (P(Q),Σ, δ′, q′, {X ⊆ Q | X ∩ F ̸= ∅})

where q′ = {q ∈ Q | q = q0 or is accessible from q0 by spontaneous moves in N} and

δ′((X, x)) = {q ∈ Q | q ∈ δ((r, x)) for some r ∈ X or is accessible from such an r by spontaneous moves in N}

CC BY-NC-SA 2.0 Version August 7, 2024 (15)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Consider the state diagram of an NFA over {0, 1}. Use the “macro-state” construction to find an equivalent
DFA.

Prune this diagram to get an equivalent DFA with only the “macro-states” reachable from the start state.

Suppose A is a language over an alphabet Σ. Claim: if there is a regular expression R such that L(R) = A,
then there is a NFA, let’s call it N , such that L(N) = A.

Structural induction: Regular expression is built from basis regular expressions using inductive steps
(union, concatenation, Kleene star symbols). Use constructions to mirror these in NFAs.

Application: A state diagram for a NFA over {a, b} that recognizes L(a∗(ab)∗):

CC BY-NC-SA 2.0 Version August 7, 2024 (16)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Suppose A is a language over an alphabet Σ. Claim: if there is a DFA M such that L(M) = A, then there
is a regular expression, let’s call it R, such that L(R) = A.

Proof idea: Trace all possible paths from start state to accept state. Express labels of these paths as
regular expressions, and union them all.

1. Add new start state with ε arrow to old start state.

2. Add new accept state with ε arrow from old accept states. Make old accept states non-accept.

3. Remove one (of the old) states at a time: modify regular expressions on arrows that went through
removed state to restore language recognized by machine.

Application: Find a regular expression describing the language recognized by the DFA with state diagram

CC BY-NC-SA 2.0 Version August 7, 2024 (17)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Conclusion: For each language L,

There is a DFA that recognizes L ∃M (M is a DFA and L(M) = A)
if and only if

There is a NFA that recognizes L ∃N (N is a NFA and L(N) = A)
if and only if

There is a regular expression that describes L ∃R (R is a regular expression and L(R) = A)

A language is called regular when any (hence all) of the above three conditions are met.

Week3 friday

Theorem: For an alphabet Σ, For each language L over Σ,

L is recognized by some DFA
iff

L is recognized by some NFA
iff

L is described by some regular expression

If (any, hence all) these conditions apply, L is called regular.

Prove or Disprove: There is some alphabet Σ for which there is some language recognized by an NFA
but not by any DFA.

Prove or Disprove: There is some alphabet Σ for which there is some finite language not described by
any regular expression over Σ.

Prove or Disprove: If a language is recognized by an NFA then the complement of this language is not
recognized by any DFA.

CC BY-NC-SA 2.0 Version August 7, 2024 (18)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Set Cardinality

{0, 1}

{0, 1}∗

P({0, 1})

The set of all languages over {0, 1}

The set of all regular expressions over {0, 1}

The set of all regular languages over {0, 1}

CC BY-NC-SA 2.0 Version August 7, 2024 (19)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Pumping Lemma (Sipser Theorem 1.70): If A is a regular language, then there is a number p (a pumping
length) where, if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz
such that

• |y| > 0

• for each i ≥ 0, xyiz ∈ A

• |xy| ≤ p.

True or False: A pumping length for A = {0, 1}∗ is p = 5.

True or False: A pumping length for A = {1, 01, 001, 0001, 00001} is p = 4.

True or False: A pumping length for A = {0j1 | j ≥ 0} is p = 3.

True or False: For any language A, if p is a pumping length for A and p′ > p, then p′ is also a pumping
length for A.

Week2 monday

Review: Formal definition of DFA: M = (Q,Σ, δ, q0, F)

• Finite set of states Q

• Alphabet Σ

• Transition function δ

• Start state q0

• Accept (final) states F

CC BY-NC-SA 2.0 Version August 7, 2024 (20)

https://creativecommons.org/licenses/by-nc-sa/2.0/

In the state diagram of M , how many outgoing arrows are there from each state?

M = ({q, r, s}, {a, b}, δ, q, {s}) where δ is (rows labelled by states and columns labelled by symbols):

δ a b
q r q
r r s
s s s

The state diagram for M is

Give two examples of strings that are accepted by M and two examples of strings that are rejected by M :

Add “labels” for states in the state diagram, e.g. “have not seen any of desired pattern yet” or “sink state”.

CC BY-NC-SA 2.0 Version August 7, 2024 (21)

https://creativecommons.org/licenses/by-nc-sa/2.0/

We can use the analysis of the roles of the states in the state diagram to describe the language recognized
by the DFA.

L(M) =

A regular expression describing L(M) is

Let the alphabet be Σ1 = {0, 1}.

A state diagram for a DFA that recognizes {w | w contains at most two 1’s} is

A state diagram for a DFA that recognizes {w | w contains more than two 1’s} is

CC BY-NC-SA 2.0 Version August 7, 2024 (22)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Extra example: A state diagram for DFA recognizing

{w | w is a string over {0, 1} whose length is not a multiple of 3}

Let n be an arbitrary positive integer. What is a formal definition for a DFA recognizing

{w | w is a string over {0, 1} whose length is not a multiple of n}?

Week2 wednesday

Suppose A is a language over an alphabet Σ. By definition, this means A is a subset of Σ∗. Claim: if there
is a DFA M such that L(M) = A then there is another DFA, let’s call it M ′, such that L(M ′) = A, the
complement of A, defined as {w ∈ Σ∗ | w /∈ A}.

Proof idea:

Proof:

A useful (optional) bit of terminology: the iterated transition function of a DFA M = (Q,Σ, δ, q0, F) is
defined recursively by

δ∗((q, w)) =

q if q ∈ Q,w = ε

δ((q, a)) if q ∈ Q, w = a ∈ Σ

δ((δ∗(q, u), a)) if q ∈ Q, w = ua where u ∈ Σ∗ and a ∈ Σ

Using this terminology, M accepts a string w over Σ if and only if δ∗((q0, w)) ∈ F .

CC BY-NC-SA 2.0 Version August 7, 2024 (23)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Fix Σ = {a, b}. A state diagram for a DFA that recognizes {w | w has ab as a substring and is of even length}:

Suppose A1, A2 are languages over an alphabet Σ. Claim: if there is a DFA M1 such that L(M1) = A1 and
DFA M2 such that L(M2) = A2, then there is another DFA, let’s call it M , such that L(M) = A1 ∩ A2.

Proof idea:

Formal construction:

Application: When A1 = {w | w has ab as a substring} and A2 = {w | w is of even length}.

CC BY-NC-SA 2.0 Version August 7, 2024 (24)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Suppose A1, A2 are languages over an alphabet Σ. Claim: if there is a DFA M1 such that L(M1) = A1

and DFA M2 such that L(M2) = A2, then there is another DFA, let’s call it M , such that L(M) = A1∪A2.
Sipser Theorem 1.25, page 45

Proof idea:

Formal construction:

Application: A state diagram for a DFA that recognizes {w | w has ab as a substring or is of even length}:

CC BY-NC-SA 2.0 Version August 7, 2024 (25)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week2 friday

Nondeterministic finite automaton M = (Q,Σ, δ, q0, F)
Finite set of states Q Can be labelled by any collection of distinct names. Default: q0, q1, . . .
Alphabet Σ Each input to the automaton is a string over Σ.
Arrow labels Σε Σε = Σ ∪ {ε}.

Arrows in the state diagram are labelled either by symbols from Σ or by ε
Transition function δ δ : Q× Σε → P(Q) gives the set of possible next states for a transition

from the current state upon reading a symbol or spontaneously moving.
Start state q0 Element of Q. Each computation of the machine starts at the start state.
Accept (final) states F F ⊆ Q.
M accepts the input string if and only if there is a computation of M on the input string

that processes the whole string and ends in an accept state.
Page 53

The formal definition of the NFA over {0, 1} given by this state diagram is:

The language over {0, 1} recognized by this NFA is:

Change the transition function to get a different NFA which accepts the empty string.

CC BY-NC-SA 2.0 Version August 7, 2024 (26)

https://creativecommons.org/licenses/by-nc-sa/2.0/

The state diagram of an NFA over {a, b} is below. The formal definition of this NFA is:

The language recognized by this NFA is:

CC BY-NC-SA 2.0 Version August 7, 2024 (27)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week1 monday

We will use vocabulary that should be familiar from your discrete math and introduction to proofs classes.
Some of the notation conventions may be a bit different: we will use the notation from this class’ textbook1.

Write out in words the meaning of the symbols below:

{a, b, c}

|{a, b, a}| = 2

|aba| = 3

(a, 3, 2, b, b)

Term Typical symbol Meaning

Alphabet Σ, Γ A non-empty finite set
Symbol over Σ σ, b, x An element of the alphabet Σ
String over Σ u, v, w A finite list of symbols from Σ
The set of all strings over Σ Σ∗ The collection of all possible strings formed from symbols

from Σ
(Some) language over Σ L (Some) set of strings over Σ
Empty string ε The string of length 0
Empty set ∅ The empty language
The power set of a set X P(X) The set of all subsets of X
Natural numbers N The set of positive integers
Finite set The empty set or a set whose distinct elements can be

counted by a natural number
Infinite set A set that is not finite.

Pages 3, 4, 6, 13, 14, 53

1Page references are to the 3rd edition (International) of Sipser’s Introduction to the Theory of Computation, available
through various sources for under $30. You may be able to opt in to purchase a digital copy through Canvas. Copies of
the book are also available for those who can’t access the book to borrow from the course instructor, while supplies last
(minnes@eng.ucsd.edu)

CC BY-NC-SA 2.0 Version August 7, 2024 (28)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Term Notation Meaning

Reverse of a string w wR write w in the opposite order, if w = w1 · · ·wn then
wR = wn · · ·w1. Note: ε

R = ε
Concatenating strings x and y xy take x = x1 · · ·xm, y = y1 · · · yn and form xy =

x1 · · ·xmy1 · · · yn
String z is a substring of string w there are strings u, v such that w = uzv
String x is a prefix of string y there is a string z such that y = xz
String x is a proper prefix of string y x is a prefix of y and x ̸= y
Shortlex order, also known as string
order over alphabet Σ

Order strings over Σ first by length and then according
to the dictionary order, assuming symbols in Σ have
an ordering.

Pages 13, 14

Circle the correct choice:

A string over an alphabet Σ is an element of Σ∗ OR a subset of Σ∗.

A language over an alphabet Σ is an element of Σ∗ OR a subset of Σ∗.

Extra examples for practice:

With Σ1 = {0, 1} and Σ2 = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z} and Γ = {0, 1, x, y, z}

An example of a string of length 3 over Σ1 is

An example of a string of length 1 over Σ2 is

The number of distinct strings of length 2 over Γ is

An example of a language over Σ1 of size 1 is

An example of an infinite language over Σ1 is

An example of a finite language over Γ is

True or False: ε ∈ Σ1

True or False: ε is a string over Σ1

True or False: ε is a language over Σ1

True or False: ε is a prefix of some string over Σ1

True or False: There is a string over Σ1 that is a proper prefix of ε

The first five strings over Σ1 in string order, using the ordering 0 < 1:

The first five strings over Σ2 in string order, using the usual alphabetical ordering for single letters:

CC BY-NC-SA 2.0 Version August 7, 2024 (29)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week1 wednesday

Our motivation in studying sets of strings is that they can be used to encode problems. To calibrate how
difficult a problem is to solve, we describe how complicated the set of strings that encodes it is. How do we
define sets of strings?

How would you describe the language that has no elements at all?

How would you describe the language that has all strings over {0, 1} as its elements?

CC BY-NC-SA 2.0 Version August 7, 2024 (30)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Definition 1.52: A regular expression over alphabet Σ is a syntactic expression that can describe a
language over Σ. The collection of all regular expressions is defined recursively:

Basis steps of recursive definition

a is a regular expression, for a ∈ Σ

ε is a regular expression

∅ is a regular expression

Recursive steps of recursive definition

(R1 ∪R2) is a regular expression when R1, R2 are regular expressions

(R1 ◦R2) is a regular expression when R1, R2 are regular expressions

(R∗
1) is a regular expression when R1 is a regular expression

The semantics (or meaning) of the syntactic regular expression is the language described by the regular
expression. The function that assigns a language to a regular expression over Σ is defined recursively,
using familiar set operations:

Basis steps of recursive definition

The language described by a, for a ∈ Σ, is {a} and we write L(a) = {a}
The language described by ε is {ε} and we write L(ε) = {ε}
The language described by ∅ is {} and we write L(∅) = ∅.

Recursive steps of recursive definition

When R1, R2 are regular expressions, the language described by the regular expression
(R1 ∪R2) is the union of the languages described by R1 and R2, and we write

L((R1 ∪R2)) = L(R1) ∪ L(R2) = {w | w ∈ L(R1) ∨ w ∈ L(R2)}

When R1, R2 are regular expressions, the language described by the regular expression
(R1 ◦R2) is the concatenation of the languages described by R1 and R2, and we write

L((R1 ◦R2)) = L(R1) ◦ L(R2) = {uv | u ∈ L(R1) ∧ v ∈ L(R2)}

When R1 is a regular expression, the language described by the regular expression (R∗
1) is

the Kleene star of the language described by R1 and we write

L((R∗
1)) = (L(R1))

∗ = {w1 · · ·wk | k ≥ 0 and each wi ∈ L(R1)}

For the following examples assume the alphabet is Σ1 = {0, 1}:

The language described by the regular expression 0 is L(0) = {0}

The language described by the regular expression 1 is L(1) = {1}

The language described by the regular expression ε is L(ε) = {ε}

CC BY-NC-SA 2.0 Version August 7, 2024 (31)

https://creativecommons.org/licenses/by-nc-sa/2.0/

The language described by the regular expression ∅ is L(∅) = ∅

The language described by the regular expression ((0 ∪ 1) ∪ 1) is L(((0 ∪ 1) ∪ 1)) =

The language described by the regular expression 1+ is L((1)+) =

The language described by the regular expression Σ∗
11 is L(Σ∗

11) =

The language described by the regular expression (Σ1Σ1Σ1Σ1Σ1)
∗ is L((Σ1Σ1Σ1Σ1Σ1)

∗) =

A regular expression that describes the language {00, 01, 10, 11} is

A regular expression that describes the language {0n1 | n is even} is

Shorthand and conventions

Assuming Σ is the alphabet, we use the following conventions
Σ regular expression describing language consisting of all strings of length 1 over Σ
∗ then ◦ then ∪ precedence order, unless parentheses are used to change it
R1R2 shorthand for R1 ◦R2 (concatenation symbol is implicit)
R+ shorthand for R∗ ◦R
Rk shorthand for R concatenated with itself k times, where k is a natural number
Pages 63 - 65

CC BY-NC-SA 2.0 Version August 7, 2024 (32)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Caution: many programming languages that support regular expressions build in functionality
that is more powerful than the “pure” definition of regular expressions given here.

Regular expressions are everywhere (once you start looking for them).

Software tools and languages often have built-in support for regular expressions to describe patterns that
we want to match (e.g. Excel/ Sheets, grep, Perl, python, Java, Ruby).

Under the hood, the first phase of compilers is to transform the strings we write in code to tokens
(keywords, operators, identifiers, literals). Compilers use regular expressions to describe the sets of strings
that can be used for each token type.

Next time: we’ll start to see how to build machines that decide whether strings match the pattern described
by a regular expression.

Extra examples for practice:

Which regular expression(s) below describe a language that includes the string a as an element?

a∗b∗

a(ba)∗b

a∗ ∪ b∗

(aaa)∗

(ε ∪ a)b

CC BY-NC-SA 2.0 Version August 7, 2024 (33)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week1 friday

Review: Determine whether each statement below about regular expressions over the alphabet {a, b, c} is
true or false:

True or False: a ∈ L((a ∪ b) ∪ c)

True or False: ab ∈ L((a ∪ b)∗)

True or False: ba ∈ L(a∗b∗)

True or False: ε ∈ L(a ∪ b ∪ c)

True or False: ε ∈ L((a ∪ b)∗)

True or False: ε ∈ L(a∗b∗)

From the pre-class reading, pages 34-36: A deterministic finite automaton (DFA) is specified by
M = (Q,Σ, δ, q0, F). This 5-tuple is called the formal definition of the DFA. The DFA can also be
represented by its state diagram: with nodes for the state, labelled edges specifying the transition function,
and decorations on nodes denoting the start and accept states.

Finite set of states Q can be labelled by any collection of distinct names. Often we use default
state labels q0, q1, . . .

The alphabet Σ determines the possible inputs to the automaton. Each input to the automaton
is a string over Σ, and the automaton “processes” the input one symbol (or character) at a time.

The transition function δ gives the next state of the DFA based on the current state of the
machine and on the next input symbol.

The start state q0 is an element of Q. Each computation of the machine starts at the start state.

The accept (final) states F form a subset of the states of the DFA, F ⊆ Q. These states are
used to flag if the machine accepts or rejects an input string.

The computation of a machine on an input string is a sequence of states in the machine, starting
with the start state, determined by transitions of the machine as it reads successive input
symbols.

The DFA M accepts the given input string exactly when the computation of M on the input
string ends in an accept state. M rejects the given input string exactly when the computation
of M on the input string ends in a nonaccept state, that is, a state that is not in F .

CC BY-NC-SA 2.0 Version August 7, 2024 (34)

https://creativecommons.org/licenses/by-nc-sa/2.0/

The language of M , L(M), is defined as the set of all strings that are each accepted by the
machine M . Each string that is rejected by M is not in L(M). The language of M is also called
the language recognized by M .

What is finite about all deterministic finite automata? (Select all that apply)

□ The size of the machine (number of states, number of arrows)

□ The number of strings that are accepted by the machine

□ The length of each computation of the machine

The formal definition of this DFA is

Classify each string a, aa, ab, ba, bb, ε as accepted by the DFA or rejected by the DFA.

Why are these the only two options?

The language recognized by this DFA is

CC BY-NC-SA 2.0 Version August 7, 2024 (35)

https://creativecommons.org/licenses/by-nc-sa/2.0/

The language recognized by this DFA is

The language recognized by this DFA is

CC BY-NC-SA 2.0 Version August 7, 2024 (36)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week10 friday

Model of Computation Class of Languages

Deterministic finite automata: formal definition,
how to design for a given language, how to describe
language of a machine? Nondeterministic finite au-
tomata: formal definition, how to design for a given
language, how to describe language of a machine? Reg-
ular expressions: formal definition, how to design for a
given language, how to describe language of expression?
Also: converting between different models.

Class of regular languages: what are the clo-
sure properties of this class? which languages are
not in the class? using pumping lemma to prove
nonregularity.

Push-down automata: formal definition, how to de-
sign for a given language, how to describe language of a
machine? Context-free grammars: formal definition,
how to design for a given language, how to describe lan-
guage of a grammar?

Class of context-free languages: what are the
closure properties of this class? which languages
are not in the class?

Turing machines that always halt in polynomial time P

Nondeterministic Turing machines that always halt in
polynomial time

NP

Deciders (Turing machines that always halt): formal
definition, how to design for a given language, how to
describe language of a machine?

Class of decidable languages: what are the
closure properties of this class? which languages
are not in the class? using diagonalization and
mapping reduction to show undecidability

Turing machines formal definition, how to design for a
given language, how to describe language of a machine?

Class of recognizable languages: what are the
closure properties of this class? which languages
are not in the class? using closure and mapping
reduction to show unrecognizability

CC BY-NC-SA 2.0 Version August 7, 2024 (37)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Given a language, prove it is regular

Strategy 1: construct DFA recognizing the language and prove it works.

Strategy 2: construct NFA recognizing the language and prove it works.

Strategy 3: construct regular expression recognizing the language and prove it works.

“Prove it works” means . . .

Example: L = {w ∈ {0, 1}∗ | w has odd number of 1s or starts with 0}

Using NFA

Using regular expressions

CC BY-NC-SA 2.0 Version August 7, 2024 (38)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: Select all and only the options that result in a true statement: “To show a language A is not
regular, we can. . . ”

a. Show A is finite

b. Show there is a CFG generating A

c. Show A has no pumping length

d. Show A is undecidable

CC BY-NC-SA 2.0 Version August 7, 2024 (39)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: What is the language generated by the CFG with rules

S → aSb | bY | Y a

Y → bY | Y a | ε

CC BY-NC-SA 2.0 Version August 7, 2024 (40)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: Prove that the language T = {⟨M⟩ | M is a Turing machine and L(M) is infinite} is undecid-
able.

CC BY-NC-SA 2.0 Version August 7, 2024 (41)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: Prove that the class of decidable languages is closed under concatenation.

CC BY-NC-SA 2.0 Version August 7, 2024 (42)

https://creativecommons.org/licenses/by-nc-sa/2.0/

