
context-free-languages

Week5 monday

Three different CFGs that each generate the language {abba}

({S, T, V,W}, {a, b}, {S → aT, T → bV, V → bW,W → a}, S)

({Q}, {a, b}, {Q → abba}, Q)

({X, Y }, {a, b}, {X → aY a, Y → bb}, X)

Design a CFG to generate the language {anbn | n ≥ 0}

Sample derivation:

Design a CFG to generate the language {aibj | j ≥ i ≥ 0}

Sample derivation:

CC BY-NC-SA 2.0 Version August 7, 2024 (1)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Theorem 2.20: A language is generated by some context-free grammar if and only if it is recognized by
some push-down automaton.

Definition: a language is called context-free if it is the language generated by a context-free grammar.
The class of all context-free language over a given alphabet Σ is called CFL.

Consequences:

• Quick proof that every regular language is context free

• To prove closure of the class of context-free languages under a given operation, we can choose either
of two modes of proof (via CFGs or PDAs) depending on which is easier

• To fully specify a PDA we could give its 6-tuple formal definition or we could give its input alphabet,
stack alphabet, and state diagram. An informal description of a PDA is a step-by-step description of
how its computations would process input strings; the reader should be able to reconstruct the state
diagram or formal definition precisely from such a descripton. The informal description of a PDA can
refer to some common modules or subroutines that are computable by PDAs:

– PDAs can “test for emptiness of stack” without providing details. How? We can always push
a special end-of-stack symbol, $, at the start, before processing any input, and then use this
symbol as a flag.

– PDAs can “test for end of input” without providing details. How? We can transform a PDA to
one where accepting states are only those reachable when there are no more input symbols.

Over Σ = {a, b}, let L = {anbm | n ̸= m}. Goal: Prove L is context-free.

CC BY-NC-SA 2.0 Version August 7, 2024 (2)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Suppose L1 and L2 are context-free languages over Σ. Goal: L1 ∪ L2 is also context-free.

Approach 1: with PDAs

Let M1 = (Q1,Σ,Γ1, δ1, q1, F1) and M2 = (Q2,Σ,Γ2, δ2, q2, F2) be PDAs with L(M1) = L1 and L(M2) = L2.

Define M =

Approach 2: with CFGs

Let G1 = (V1,Σ, R1, S1) and G2 = (V2,Σ, R2, S2) be CFGs with L(G1) = L1 and L(G2) = L2.

Define G =

CC BY-NC-SA 2.0 Version August 7, 2024 (3)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Suppose L1 and L2 are context-free languages over Σ. Goal: L1 ◦ L2 is also context-free.

Approach 1: with PDAs

Let M1 = (Q1,Σ,Γ1, δ1, q1, F1) and M2 = (Q2,Σ,Γ2, δ2, q2, F2) be PDAs with L(M1) = L1 and L(M2) = L2.

Define M =

Approach 2: with CFGs

Let G1 = (V1,Σ, R1, S1) and G2 = (V2,Σ, R2, S2) be CFGs with L(G1) = L1 and L(G2) = L2.

Define G =

CC BY-NC-SA 2.0 Version August 7, 2024 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Summary

Over a fixed alphabet Σ, a language L is regular

iff it is described by some regular expression
iff it is recognized by some DFA
iff it is recognized by some NFA

Over a fixed alphabet Σ, a language L is context-free

iff it is generated by some CFG
iff it is recognized by some PDA

Fact: Every regular language is a context-free language.

Fact: There are context-free languages that are not nonregular.

Fact: There are countably many regular languages.

Fact: There are countably inifnitely many context-free languages.

Consequence: Most languages are not context-free!

Examples of non-context-free languages

{anbncn | 0 ≤ n, n ∈ Z}
{aibjck | 0 ≤ i ≤ j ≤ k, i ∈ Z, j ∈ Z, k ∈ Z}
{ww | w ∈ {0, 1}∗}

(Sipser Ex 2.36, Ex 2.37, 2.38)

There is a Pumping Lemma for CFL that can be used to prove a specific language is non-context-free: If
A is a context-free language, there there is a number p where, if s is any string in A of length at least p,
then s may be divided into five pieces s = uvxyz where (1) for each i ≥ 0, uvixyiz ∈ A, (2) |uv| > 0, (3)
|vxy| ≤ p. We will not go into the details of the proof or application of Pumping Lemma for CFLs this
quarter.

CC BY-NC-SA 2.0 Version August 7, 2024 (5)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week5 wednesday

A set X is said to be closed under an operation OP if, for any elements in X, applying OP to them gives
an element in X.

True/False Closure claim
True The set of integers is closed under multiplication.

∀x∀y ((x ∈ Z ∧ y ∈ Z) → xy ∈ Z)
True For each set A, the power set of A is closed under intersection.

∀A1∀A2 ((A1 ∈ P(A) ∧ A2 ∈ P(A) ∈ Z) → A1 ∩ A2 ∈ P(A))
The class of regular languages over Σ is closed under complementation.

The class of regular languages over Σ is closed under union.

The class of regular languages over Σ is closed under intersection.

The class of regular languages over Σ is closed under concatenation.

The class of regular languages over Σ is closed under Kleene star.

The class of context-free languages over Σ is closed under complementation.

The class of context-free languages over Σ is closed under union.

The class of context-free languages over Σ is closed under intersection.

The class of context-free languages over Σ is closed under concatenation.

The class of context-free languages over Σ is closed under Kleene star.

Assume Σ = {0, 1,#}

Σ∗ Regular / nonregular and context-free / not context-free
{0i#1j | i ≥ 0, j ≥ 0} Regular / nonregular and context-free / not context-free

{0i1j#1j0i | i ≥ 0, j ≥ 0} Regular / nonregular and context-free / not context-free
{0i1j#0i1j | i ≥ 0, j ≥ 0} Regular / nonregular and context-free / not context-free

CC BY-NC-SA 2.0 Version August 7, 2024 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Turing machines: unlimited read + write memory, unlimited time (computation can proceed without
“consuming” input and can re-read symbols of input)

• Division betweeen program (CPU, state diagram) and data

• Unbounded memory gives theoretical limit to what modern computation (including PCs, supercom-
puters, quantum computers) can achieve

• State diagram formulation is simple enough to reason about (and diagonalize against) while expressive
enough to capture modern computation

For Turing machine M = (Q,Σ,Γ, δ, q0, qaccept, qreject) the computation of M on a string w over Σ is:

• Read/write head starts at leftmost position on tape.

• Input string is written on |w|-many leftmost cells of tape, rest of the tape cells have the blank symbol.
Tape alphabet is Γ with ∈ Γ and Σ ⊆ Γ. The blank symbol /∈ Σ.

• Given current state of machine and current symbol being read at the tape head, the machine transitions
to next state, writes a symbol to the current position of the tape head (overwriting existing symbol),
and moves the tape head L or R (if possible). Formally, transition function is

δ : Q× Γ → Q× Γ× {L,R}

• Computation ends if and when machine enters either the accept or the reject state. This is called
halting. Note: qaccept ̸= qreject.

The language recognized by the Turing machine M , is

{w ∈ Σ∗ | computation of M on w halts after entering the accept state} = {w ∈ Σ∗ | w is accepted by M}

CC BY-NC-SA 2.0 Version August 7, 2024 (7)

https://creativecommons.org/licenses/by-nc-sa/2.0/

An example Turing machine: Σ = ,Γ =

δ((q0, 0)) =

Formal definition:

Sample computation:

q0 ↓
0 0 0

The language recognized by this machine is . . .

Extra practice:

Formal definition:

Sample computation:

CC BY-NC-SA 2.0 Version August 7, 2024 (8)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week4 wednesday

Regular sets are not the end of the story

• Many nice / simple / important sets are not regular

• Limitation of the finite-state automaton model: Can’t “count”, Can only remember finitely far into
the past, Can’t backtrack, Must make decisions in “real-time”

• We know actual computers are more powerful than this model...

The next model of computation. Idea: allow some memory of unbounded size. How?

• To generalize regular expressions: context-free grammars

• To generalize NFA: Pushdown automata, which is like an NFA with access to a stack: Number
of states is fixed, number of entries in stack is unbounded. At each step (1) Transition to new state
based on current state, letter read, and top letter of stack, then (2) (Possibly) push or pop a letter to
(or from) top of stack. Accept a string iff there is some sequence of states and some sequence of stack
contents which helps the PDA processes the entire input string and ends in an accepting state.

Is there a PDA that recognizes the nonregular language {0n1n | n ≥ 0}?

CC BY-NC-SA 2.0 Version August 7, 2024 (9)

https://creativecommons.org/licenses/by-nc-sa/2.0/

The PDA with state diagram above can be informally described as:

Read symbols from the input. As each 0 is read, push it onto the stack. As soon as 1s are seen,
pop a 0 off the stack for each 1 read. If the stack becomes empty and we are at the end of the
input string, accept the input. If the stack becomes empty and there are 1s left to read, or if 1s
are finished while the stack still contains 0s, or if any 0s appear in the string following 1s, reject
the input.

Trace the computation of this PDA on the input string 01.

Trace the computation of this PDA on the input string 011.

A PDA recognizing the set { } can be informally described as:

Read symbols from the input. As each 0 is read, push it onto the stack. As soon as 1s are seen,
pop a 0 off the stack for each 1 read. If the stack becomes empty and there is exactly one 1 left
to read, read that 1 and accept the input. If the stack becomes empty and there are either zero
or more than one 1s left to read, or if the 1s are finished while the stack still contains 0s, or if
any 0s appear in the input following 1s, reject the input.

Modify the state diagram below to get a PDA that implements this description:

CC BY-NC-SA 2.0 Version August 7, 2024 (10)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Definition A pushdown automaton (PDA) is specified by a 6-tuple (Q,Σ,Γ, δ, q0, F) where Q is the
finite set of states, Σ is the input alphabet, Γ is the stack alphabet,

δ : Q× Σε × Γε → P(Q× Γε)

is the transition function, q0 ∈ Q is the start state, F ⊆ Q is the set of accept states.

Draw the state diagram and give the formal definition of a PDA with Σ = Γ.

Draw the state diagram and give the formal definition of a PDA with Σ ∩ Γ = ∅.

CC BY-NC-SA 2.0 Version August 7, 2024 (11)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Extra practice: Consider the state diagram of a PDA with input alphabet Σ and stack alphabet Γ.

Label means
a, b; c when a ∈ Σ, b ∈ Γ, c ∈ Γ

a, ε; c when a ∈ Σ, c ∈ Γ

a, b; ε when a ∈ Σ, b ∈ Γ

a, ε; ε when a ∈ Σ

How does the meaning change if a is replaced by ε?

Note: alternate notation is to replace ; with →

CC BY-NC-SA 2.0 Version August 7, 2024 (12)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week4 friday

For the PDA state diagrams below, Σ = {0, 1}.

Mathematical description of language State diagram of PDA recognizing language
Γ = {$,#}

Γ = {@, 1}

{0i1j0k | i, j, k ≥ 0}

CC BY-NC-SA 2.0 Version August 7, 2024 (13)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Big picture: PDAs were motivated by wanting to add some memory of unbounded size to NFA. How do we
accomplish a similar enhancement of regular expressions to get a syntactic model that is more expressive?

DFA, NFA, PDA: Machines process one input string at a time; the computation of a machine on its input
string reads the input from left to right.

Regular expressions: Syntactic descriptions of all strings that match a particular pattern; the language
described by a regular expression is built up recursively according to the expression’s syntax

Context-free grammars: Rules to produce one string at a time, adding characters from the middle,
beginning, or end of the final string as the derivation proceeds.

Term Typical symbol Definition

Context-free grammar
(CFG)

G G = (V,Σ, R, S)

Variables V Finite set of symbols that represent phases in production
pattern

Terminals Σ Alphabet of symbols of strings generated by CFG
V ∩ Σ = ∅

Rules R Each rule is A → u with A ∈ V and u ∈ (V ∪ Σ)∗

Start variable S Usually on LHS of first / topmost rule
Derivation Sequence of substitutions in a CFG

S =⇒ · · · =⇒ w Start with start variable, apply one rule to one occurrence
of a variable at a time

Language generated by the
CFG G

L(G) {w ∈ Σ∗ | there is derivation in G that ends in w} =
{w ∈ Σ∗ | S =⇒ ∗w}

Context-free language A language that is the language generated by some CFG
Sipser pages 102-103

Examples of context-free grammars, derivations in those grammars, and the languages gen-
erated by those grammars

G1 = ({S}, {0}, R, S) with rules

S → 0S

S → 0

In L(G1) . . .

Not in L(G1) . . .

CC BY-NC-SA 2.0 Version August 7, 2024 (14)

https://creativecommons.org/licenses/by-nc-sa/2.0/

G2 = ({S}, {0, 1}, R, S)
S → 0S | 1S | ε

In L(G2) . . .

Not in L(G2) . . .

({S, T}, {0, 1}, R, S) with rules

S → T1T1T1T

T → 0T | 1T | ε

In L(G3) . . .

Not in L(G3) . . .

CC BY-NC-SA 2.0 Version August 7, 2024 (15)

https://creativecommons.org/licenses/by-nc-sa/2.0/

G4 = ({A,B}, {0, 1}, R,A) with rules

A → 0A0 | 0A1 | 1A0 | 1A1 | 1

In L(G4) . . .

Not in L(G4) . . .

Extra practice: Is there a CFG G with L(G) = ∅?

CC BY-NC-SA 2.0 Version August 7, 2024 (16)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week10 friday

Model of Computation Class of Languages

Deterministic finite automata: formal definition,
how to design for a given language, how to describe
language of a machine? Nondeterministic finite au-
tomata: formal definition, how to design for a given
language, how to describe language of a machine? Reg-
ular expressions: formal definition, how to design for a
given language, how to describe language of expression?
Also: converting between different models.

Class of regular languages: what are the clo-
sure properties of this class? which languages are
not in the class? using pumping lemma to prove
nonregularity.

Push-down automata: formal definition, how to de-
sign for a given language, how to describe language of a
machine? Context-free grammars: formal definition,
how to design for a given language, how to describe lan-
guage of a grammar?

Class of context-free languages: what are the
closure properties of this class? which languages
are not in the class?

Turing machines that always halt in polynomial time P

Nondeterministic Turing machines that always halt in
polynomial time

NP

Deciders (Turing machines that always halt): formal
definition, how to design for a given language, how to
describe language of a machine?

Class of decidable languages: what are the
closure properties of this class? which languages
are not in the class? using diagonalization and
mapping reduction to show undecidability

Turing machines formal definition, how to design for a
given language, how to describe language of a machine?

Class of recognizable languages: what are the
closure properties of this class? which languages
are not in the class? using closure and mapping
reduction to show unrecognizability

CC BY-NC-SA 2.0 Version August 7, 2024 (17)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Given a language, prove it is regular

Strategy 1: construct DFA recognizing the language and prove it works.

Strategy 2: construct NFA recognizing the language and prove it works.

Strategy 3: construct regular expression recognizing the language and prove it works.

“Prove it works” means . . .

Example: L = {w ∈ {0, 1}∗ | w has odd number of 1s or starts with 0}

Using NFA

Using regular expressions

CC BY-NC-SA 2.0 Version August 7, 2024 (18)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: Select all and only the options that result in a true statement: “To show a language A is not
regular, we can. . . ”

a. Show A is finite

b. Show there is a CFG generating A

c. Show A has no pumping length

d. Show A is undecidable

CC BY-NC-SA 2.0 Version August 7, 2024 (19)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: What is the language generated by the CFG with rules

S → aSb | bY | Y a

Y → bY | Y a | ε

CC BY-NC-SA 2.0 Version August 7, 2024 (20)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: Prove that the language T = {⟨M⟩ | M is a Turing machine and L(M) is infinite} is undecid-
able.

CC BY-NC-SA 2.0 Version August 7, 2024 (21)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: Prove that the class of decidable languages is closed under concatenation.

CC BY-NC-SA 2.0 Version August 7, 2024 (22)

https://creativecommons.org/licenses/by-nc-sa/2.0/

