Discussion NOTES Week & CSE 105 Spring 23
Agenda: 4.13, 4.17, 4.18, 4.21, 4.24 from Sipser.
4.13 A= { (Ris) R&S are regular expr. 8 L(R) & L(S)}.
Show that A is decidable. Soln: $L(R) \subseteq L(S) \longleftrightarrow L(R) \cap \overline{L(S)} = \overline{p}$ Construct decider X as follows:
X = "On input (Ris), where RES are regular expr 1. Construct DFA P'ST L(P) = L(S) 2. Construct DFA R ST L(Q) = L(P) N L(R) 3. Run the Turing Machine T' on input (Q), Where T decides EDFA:
4. If T accepts, accept. If T rejects, reject." X is a devider because T is a devider. Also, X accepts (RS) iff L(R) \cap L(S) = $\overline{p} \mapsto X$ accepts (RS) iff L(R) \subseteq L(S).
& rejects otherwise - X decides A, so A is decidable.
4.17 Prove that EQDFA is decidable by testing the 2 DFAs On all strings up to a certain length. Also calculate a length that works
Sol: Claim: If A & B are DFAs, then L(A) = L(B) iff A & B accept the same strings up to length mn, where m is the #states in A & n is the # states in B.
An alternate way to state this claim: L(A) = L(B) < A & B differ on some string 's' of length AT MOST mn.

Proof: Let it be the shortest string on which A & B differ
(i.e. A rejects & B accepts or vice versa)
let l = t
Suppose towards contradiction, that l>mn.
Let as, a, a2, as be the sequence of states that A
enters on input to a second se
Let bo, br, b2, be be the sequence of states that B
enters on input t.
Since A has m states, B has n states, there are only
Mn distinct pairs of the form (a, b) where a is a state of A
& b is a state of B.
However, there are l+1 pairs of the form (ai, bi) 2
by our assumption, l>mn., so l+1 >mn.
By the pigeonhole principle Ji, j (ai, bi) = (aj, bj) (which
Means that $a_i = a_j \ b_i = b_j$).
Notice that if you remove, from t, the substring from
position i to position j-1, you get a string (say t')
Such that
(∞) $ t' < t $
(b) A accepts t' iff A accepts t & Some way on t'as B accepts t' iff B accepts t Sthey do on t.
We have a found a string t', shorter than t, on
Which A & B differ. But this contradicts the fact that
t is the shortest string on which A & B differ Since each
Step followed logically from previous steps, our hypothesis

must be false.
$\mathcal{L} = \mathcal{L} + \mathcal{L} + \mathcal{M} $
ERDFA can be decided by testing the 2 DFAs on all
Staings up to length mn.
4.18 Show that a language C is Turing- recognizable iff
JD, a decidable language, such that
$C = \{x \mid \exists y, \angle x_1 y \} \in D \}$
Sol: We need to prove both directions.
(a) Suppose that D exists & is decided by some T.M.P.
Build a T.M. $g = 0$ input X,
1. For each y t E* 2. Run P on input <×14> 3. If Placepks, accepts."
Clearly & recognizes C, because if some input X E C, then
By such that (XIY) & D. Such a y' will be found in
some finite number of steps However if X & C, then
Q foes not hast.
: If I decidable D such that C = Ex IY, (X, Y) ED], then
C is Turing - recognizable.
(b) Suppose that C is recognizable, & J T.M M recognizing C.
Define D = { < x 14 } M accepts x within 141 steps }.
For every XEC, JK such that Macepts X in K
Steps. Suppose Y E E* & 141 = K, then (X14) E D.

However, for every $X \notin C_r$ no such K exists (since M will not accept X). $C = \{ X \mid \exists Y \mid ZXIY \} \in D \}$ (Aleo, D is decidable because on input $ZXIY$), a decider for D would just have to run M on input X for Y steps, accepting if M accepts k rejecting otherwise) \Box
4-21 S= { <m> M is a DFA that accepts we whenever it</m>
accepts w} Show that S is decidable.
Sol: If A is a language, let AR = { WR WEA}
Observation: if $\langle m \rangle \in S$, then $L(m) = L(m)^{n}$.
Construct T.M T = On input (M), where M is a DFA
1. Construct DFA N recognizing LCM) ^R (To do this, first construct an NFA that recognizes LCM) ^R . This can be done with the following steps:
(a) Keep the same states as in M, l ceverse the directions of all transitions in M:
(b) Set the new accept state to be the start.
(c) Introduce a new start state (say . 90) &
This NFA can then be converted to a DFA)
2. Run T.M F on input (MIN), Where F
devides EQPFA. IF Faccepts, accept. IF F
rejects, reject.

Clearly, T halts on every input (because F is a decider), and Tonly accepts (m) if $L(m) = L(m)^{R}$. T decides S, so S is decidable.
4.24. Define a 'Useless state' in a PDA to be a state that is never entered on any input string.
Let $S = \{ \langle p \rangle \mid p \text{ is a PDA with useless states} \}$. Prove that S is decidable.
Sol: Construct T.M T.
"on input CP>, where P is a PDA 1. For each state 2 of P
2. Modify P so that q is the only accept state.
(let this modified PDA be denoted as P). 3. Run T.M F on input <p'>, where F decides</p'>
Eppa. If F accepts, accept. Else, continue.
4. All states have been identified as NOT useless, so
If a state (q) is NOT useless, then it is reachable from the
stort state, so by making q the only accept state, these
must be some string accepted by the modified PDA. So, if
F tells us that $\langle P' \rangle$ belongs to EpDA (meaning $L(P') = \emptyset$),
then 9 must be useless, so ACCEPT. If all states have been checked & T hasn't yet accepted, then reject.

	•		٠						٠		٠	٠		•			•			٠	•	•	٠		•	•	•			•	•	•		•	
•	•	•	Ť		•	٠	j.	-1							. 1	1.		Ŀ					•	•	٠		•	T	. ,						•
٠	•		1.	1,S	. 0	<u> </u>	<u>0</u> e	CI Ø	КĊ	. F	PĘ (ĽØ (rse		け	. N	Q1	Ø	.0 (ev	954	J.	1.0	pu	+	8	.T	· (fec	nd e	z	•	•	•
•	•	•	Ċ				-	i.	•	So		t D	ble	•		•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•
٠	•		- , l	. /	20	. 2	7.	هب ۱	. (, çe i	, C	•	.⊔	•	٠	•	•	٠	•	٠	٠	۰	٠	٠	•	٠	•	•	٠	•	•	•	٠
•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
												•																							
•	•		•						٠		•	٠		•			•			٠		•	٠	•	•	•				•	•	•		•	•
	•					٠																										•	•		
•	•		•				•		٠	•	•	•	•	•		•				٠	•	•	٠	•	•	٠				•	•	•		•	•
٠	•	•	٠	•	•	•	٠	•	•	•	٠	٠	٠	٠	•	•	٠	•	•	•	٠	•	٠	•	•	•	٠		•	•	•	*	•	•	٠
•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	٠	•	•	•	•	٠	•	•	٠	•	•	٠	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•
•	•	•	•	•			•		•	•	•	٠	٠	•	•	•	•			•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•
	•		•	•	•	•	•		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•			•	•	•		•	
														•			•								•						•				
																							•												
			•						•			•		•						•						•					•	•			
•	•		٠				٠		٠		٠	٠	0	•						٠		•	٠	٠	•	٠				٠	•				
•	•		٠						٠		٠	•	0	•		•	•			٠		•	٠	•	•	٠		•			•	•	•	•	•
•	•		٠				•		٠		•	•	٠	•		•	•			٠	•	•	٠	•	•	٠				•	•	•		•	•
٠	•		٠				٠		٠	•	٠	٠	٠	•		٠	٠			٠	•	٠	٠	٠	٠	٠			•	٠	•	•	•	•	٠
•	•	•	٠	•	•	•	٠		•	•	٠	•	٠	•	•		•	•	•		•	•	٠		•	•	•		•	٠	•	•	•	•	٠
•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	٠	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	٠			•	•	•	•	•	•	•	•	•	•	•	•	٠	•	٠	•	•	•	٠	•	•	•	•	•	•	•	•
٠	•	•	٠	•	•	•	•						٠				•	•	•	٠	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	٠
•	•	•	•	•	•	•	•										•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•												٠																						
•	•		٠				٠		٠		٠	٠		٠			•		•		٠	•	٠								•	٠	•	•	
•	•		٠					•	٠		٠	٠	0	•			•			•		•	۰					•			•	•		•	۰
	•	•		•	•	•				•		•	٠		•			•	•		•		•	•			•		•	•	•	•			•
•	•	•	•	•	٠	٠	•	٠	•	•	•	•	0	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	٠	•	•	•	•	•
•	•	•	•	•	•	•	•		•	•	•	•	۰	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•
•	•	•	•	•									٠											•	•	•	•	•	•	٠	•	•	•	•	•
•	•	•	•																									•							
•	•	•	•	•	•	•							•										•	•	•	•	•	•	•	•	•	•	•	•	•
	•																																		
																												•							
	•																																		
	•		•						•			٠	•			•			•	•		٠	•	٠	٠	•	٠		•	•	•	•	•		•