Disclaimer: Discussion notes represent some of the proper detailed case analysis that goes into writing a formal proof; nevertheless, we still consider these notes to be a "rough guide" to how the proofs should go, and do not necessarily reflect the level of detail and clarity required for homeworks and exams

CSE 105 Discussion Week 1 Friday

Definitions	Notes	Example
Symbol is an element of the alphabet.	Symbols are single characters. Thus, $\varepsilon \notin \Sigma$.	a, b, c
Alphabet is a non-empty finite set of symbols.	Σ^* is the set of all strings over Σ .	$\Sigma = \{a, b, c\}$
String is a sequence of symbols.	A string over Σ has all its symbols in Σ .	Strings abc, abba, ε are over Σ .
A language over Σ is a set of strings over Σ .	Language over $\Sigma \subseteq \Sigma^*$	{abc, abba, ε } is a language over Σ . {an n \geq 0} is a language over Σ .
A regular expression over alphabet Σ is a syntactic expression that can describe a language over Σ .	You can think of regex as sequences of symbols that specify a match pattern, except \emptyset and ε .	(ab)* (a ∪ b)

Regular Expressions:

- Base Step : ε , \emptyset , and a are regular expressions, where a is a symbol in Σ .
- Recursive Step : (R1 ∪ R2), (R1 ∘ R2), (R1*) are regular expressions, where R1 and R2 are regular expressions.

```
Language described by regular expression:
```

```
\begin{split} L(\varepsilon) &= \{ \varepsilon \} \\ L(\emptyset) &= \emptyset \\ L(x) &= \{ x \}, \text{ for any symbol } x. \\ L(R_1 \ \cup \ R_2) &= L(R_1) \ \cup \ L(R_2) = \{ s \mid s \in L(R_1) \text{ or } s \in L(R_2) \} \\ L(R_1 \circ R_2) &= L(R_1) \circ L(R_2) = \{ uv \mid u \in L(R_1) \text{ and } v \in L(R_2) \} \\ L(R_1^*) &= (L(R_1))^* = \{ w_1 \ \dots \ w_k \mid k \geq 0 \text{ and each } w_i \in L(R_1) \} \end{split}
```

Example:

```
L(ab^*) = \{a, ab, abb, abbb, ...\}

L((ab)^*) = \{\varepsilon, ab, abab, ababab, ...\}
```


April : 20 20. Rengle tractice Solutions

A finite automaton is a 5-tuple (Q, E, S, 90, F), where S is states, E is alphabet, S is transition function, 90 € Q is the start state and F ⊆ Q is set of accept states

DFA S: QX5 -> Q:

NFA S:QX 5= > P(Q),

where $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$,

P(Q) is power set of Q:

(Non-determinism will be covered rext week)

1.2 $M_1 = (\xi_{q_1}, q_2, q_3 \frac{3}{2}, \xi_{a_1}, b_3, \xi_{b_1}, \xi_{a_2}, \xi_{a_2}, \xi_{a_3}, \xi_{a_4}, \xi_{a_5}, \xi_{$

· a	Ь
92	91
93	93
92	91

M2 = ({q1,q2,q3,q43, {a,b3, S2, q1, £q1,q43})

a	b	-
91	92	
92	94	
92	91	
9.2	94	
1,3		
	91 93 92 93	a b q1 q2 q3 q4 q2 q1 q3 q4 q3 q4

M = ({ 9, 92, 93, 94, 95 }, & u, d }, 8, 93, { 93} 24 w begins with 1.186 t language over regular the same as ho. £10, 100, 110, 1000,...3

 $R = \sum_{i=1}^{n} |\sum_{i=1}^{n} |\sum_{i=1}^{n}$ Ь $L = \{ w \mid w \text{ contains substring} \}$ $R = \sum \sum O \sum^*$ doesn't contain the substring Answer changed since discussion section L = 2 N N is any string except IIand III ? $R = (E U | U O \Sigma * U | O \Sigma * U | IO \Sigma *$ $U | III \Sigma \Sigma *)$ B* (Solution given back of the chapter) 1.23 Case 1 ! Assume B=B+ B+=BB* ⇒ BB ⊆ BB+ = B+ = B ⇒ BB = B · B=B+ => BB=B Case 2: Assume BB = B B = BB* = B†

Suppose $\omega \in B^+$. $\exists \chi_1, \chi_2, \dots, \chi_k \in B$ such that $w = \chi_1 \chi_2 \dots \chi_k$ for some $k \ge 1$. $\chi_1,\chi_2 \in \mathcal{B}$ => x, x2 E BB => x, x2 E B $\chi_1\chi_2$, $\chi_3 \in B$ => x1x2 x3 EBB \Rightarrow $\chi_1 \chi_2 \chi_3 \in B$ => $W=\chi_1\chi_2...\chi_R\in B$ Thus, YWEB+, WEB => Bt S $B^{+} \subseteq B$ and $B \subseteq B^{+}$ $\Rightarrow B^{+} = B$ Therefore, $BB \subseteq B \Rightarrow B^{+} = B$ Proved. BB = B iff B+=B