CSE 105 Spring 2023 Week 3 Discussion

Pumping Lemma : If A is a regular language, then there exists a number p such that for any string s in A of length at least p, s can be divided into 3 parts xyz, such that

- |y| > 0
- |xy| ≤ p
- $xy^iz \in A, \forall i \ge 0$

Using pumping lemma to prove that a language B is non-regular : Let p be the pumping length given by the pumping lemma for language B. There exists string s in B of length at least p, such that $\forall x,y,z$ such that s = xyz, $|xy| \le p$ and |y| > 0, $\exists i \ge 0$ such that $xy^iz \notin B$.

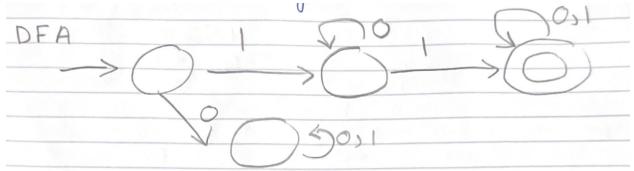
Question 1.29a : Let p be the pumping length given by the pumping lemma for language A₁. Let s = 0^p1^p2^p. s \in A₁ and |s| \ge p. Let b > 0, a such that a+b \le p, x = 0^a, y = 0^b, z = 0^{p-a-b}1^p2^p |xy| = a+b \le p, |y| = b > 0. xy⁰z = 0^a0^{p-a-b}1^p2^p = 0^{p-b}1^p2^p. Since p-b \ne p, 0^{p-b}1^p2^p \notin A₁. \forall x,y,z such that s = xyz, |xy| \le p and |y| > 0, xy⁰z \notin A₁. A₁ is non-regular.

Question 1.29b : $A_2 = \{www \mid w \in \{a,b\}^*\}$ Let p be the pumping length given by the pumping lemma for language A₂. Let s = a^pba^pba^pb. s $\in A_2$ and $|s| \ge p$. Let n > 0, m such that m+n $\le p$, x = a^m, y = aⁿ, z = a^{p-n-m}ba^pba^pb $|xy| = m+n \le p$, |y| = n > 0. $xy^0z = a^ma^{p-n-m}ba^pba^pb = a^{p-n}ba^pba^pb$ $a^{p-n}ba^pba^pb \notin A_2$. $\forall x,y,z$ such that s = xyz, $|xy| \le p$ and |y| > 0, $xy^0z \notin A_2$. A_2 is non-regular.

Question 1.29c : Answer at back of the book.

Question 1.30 : Language in example 1.73 is $L({0^n1^n | n \ge 0})$. We cannot use the same prove for language $L(0^*1^*)$.

Question 1.49 a : Prove B is regular. B = $\{1^k y \mid y \in \{0,1\}^* \text{ and } y \text{ contains at least } k \text{ 1s, for } k \ge 1\}$ A string in B must start with 1 and have another 1.



Question 1.49 b : Prove C is nonregular. C = $\{1^{k}y \mid y \in \{0,1\}^{*} \text{ and } y \text{ contains at most } k \text{ 1s, for } k \ge 1\}$

Let p be the pumping length given by the pumping lemma for language C. Let t = 01^p Let s = 1^p t. s \in C, |s| \ge p.

Let n > 0, m such that $m+n \le p$. Let $x = 1^m$, $y = 1^n$, $z = 1^{p-m-n}01^p$ $xy^0z = 1^{p-n}01^p$. $n < 0 \Rightarrow p-n < p$. $\Rightarrow xy^0z \notin C$.

Thus, $\forall x, y, z$ such that s = xyz, |y| > 0, $|xy| \le p$, $xy^0z \notin C$. C is nonregular.

Question 1.50 : Find the minimum pumping length.

Part a : Answer at the back of the chapter

Part b : Answer at the back of the chapter

Part c : 001 \cup 0*1* 001 \in 0*1* L(001 \cup 0*1*) = L(0*1*) Minimum pumping length is 1. Answer of part c.

Part d : Answer at the back of the chapter

Part e : (01)*

Minimum pumping length is 2. Any non-empty string of $L((01)^*)$ can be partitioned into $x = \varepsilon$, y = (01), z = remainder of string.

Minimum pumping length cannot be 1 because |xy| must be less than p and |y| > 0. The only choice for x, y, z would be ε , 0, and remainder of the string respectively. z would start with 1 and z \notin (01)* $xy^0z = \varepsilon \varepsilon z = z \notin$ (01)* Thus, p cannot be 1.

Part f : ε Pumping length must be greater than 0. Minimum pumping length is 1.

Part g : G = 1*01*01*00 \in 1*01*01*, but cannot be pumped.

Assume p = 2. Let n > 0, m such that m+n \leq p. Consider string s = 00. Let x = 0^m, y = 0ⁿ, z = 0^{2-m-n}. xy⁰z = 0^m ε 0^{2-m-n} = 0²⁻ⁿ n \geq 1 2-n \leq 1. \Rightarrow xy⁰z = 0 \notin G or xy⁰z = $\varepsilon \notin$ G \Rightarrow Contradiction \Rightarrow p cannot be 2.

Part h : 10(11*0)*0Minimum pumping length is 4. p \neq 3 because 100 cannot be pumped, for any y, for any i.

Part i : 1011 Minimum pumping length is 5. 1011 cannot be pumped.

Part j : Σ^* Minimum pumping length is 1. We can partition any string $s \in \Sigma^*$ into $x = \varepsilon$, y = s, and $z = \varepsilon$. $y \in \Sigma^*$ $y^i \in \Sigma^*$, $\forall i \ge 0$. $xy^iz \in \Sigma^*$, $\forall i \ge 0$.