Context Free Grammar G = (V, Σ , R, S) where

- V is Variables, a finite set of symbols.
- Σ is Terminals, a finite set of symbols, disjoint from V.
- R is set of rules / transformations.
- S is the start variable.

Example : G = ({S}, {0}, R, S), where R = {S \rightarrow 0S, S \rightarrow 0} Sample Derivation of 00 : S \Rightarrow 0S \Rightarrow 00

Context Free Language (CFL) generated by G. L(G) = {S \Rightarrow * w | w $\in \Sigma$ *}

A language is context free

⇔ Some non-deterministic PDA recognizes it

⇔ It is generated by some CFG

Practice Questions

Question 2.2 Part a : Prove context free languages are not closed under intersection. Let A = {a^mbⁿcⁿ | m, n ≥ 0} CFG G_A = ({S, X, Y}, {a, b, c}, R_A, S), where $R_A = {S \rightarrow XY, X \rightarrow aX | \varepsilon, Y \rightarrow bYc | \varepsilon}$ A is generated by G_A. It is a context free language.

Let B = {aⁿbⁿc^m | m, n ≥ 0} CFG G_B = ({S, X, Y}, {a, b, c}, R_B, S), where R_B = {S \rightarrow XY, X \rightarrow aXb | ε , Y \rightarrow Yc | ε } B is generated by G_B. It is a context free language.

 $A \cap B = \{a^n b^n c^n \mid n \ge 0\}$

Example 2.36 in the book proves that $\{a^nb^nc^n \mid n \ge 0\}$ is not context free. Thus, context free languages are not closed under intersection.

Question 2.2 Part b : Prove context free languages are not closed under complementation.

Assume CFL are closed under complementation. Let A = $\{a^m b^n c^n \mid m, n \ge 0\}$ Let B = $\{a^n b^n c^m \mid m, n \ge 0\}$ A, B are CFLs $\Rightarrow A^c, B^c \text{ are CFLs.}$ $\Rightarrow A^c \cup B^c \text{ are CFLs}$ // CFLs are closed under union $\Rightarrow (A^c \cup B^c)^c \text{ are CFLs.}$

 $(A^{c} \cup B^{c})^{c} = A \cap B$ is not a CFL. // De Morgan's Law \Rightarrow Contradiction \Rightarrow Context free languages are not closed under complementation

Question 2.4 : Give context-free grammars that generate the following languages. $\Sigma = \{0, 1\}$

Part b : {w | w starts and ends with some symbol} G = ({S, T}, Σ , R, S), where R = {S \rightarrow 0T0 | 1T1 | ε , T \rightarrow 0T | 1T | ε }

Part c : {w | w has odd length} G = ({S, T}, Σ , R, S), where R = {S \rightarrow 0T | 1T, T \rightarrow 0S | 1S | ε }

Part e : L = {w | w = reversed w} = {w | w is a palindrome} G = ({S, T}, Σ , R, S), where R = {S \rightarrow 0S0 | 1S1 | 1 | 0 | ε }

Part f : Empty set G = ({S, T}, Σ , R, S), where R = {}