Monday April 18

Recap so far: In DFA, the only memory available is in the states. Automata can only “remember” finitely far in the past and finitely much information, because they can have only finitely many states. If a computation path of a DFA visits the same state more than once, the machine can’t tell the difference between the first time and future times it visits this state. Thus, if a DFA accepts one long string, then it must accept (infinitely) many similar strings.

Definition A positive integer \(p\) is a pumping length of a language \(L\) over \(\Sigma\) means that, for each string \(s \in \Sigma^*\), if \(|s| \geq p\) and \(s \in L\), then there are strings \(x,y,z\) such that \[s = xyz\] and \[|y| > 0, \qquad \qquad \text{ for each $i \geq 0$, $xy^i z \in L$}, \qquad \text{and} \qquad \qquad |xy| \leq p.\]

Negation: A positive integer \(p\) is not a pumping length of a language \(L\) over \(\Sigma\) iff \[\exists s \left(~ |s| \geq p \wedge s \in L \wedge \forall x \forall y \forall z \left( ~\left( s = xyz \wedge |y| > 0 \wedge |xy| \leq p~ \right) \to \exists i ( i \geq 0 \wedge xy^iz \notin L ) \right) ~\right)\] Informally:

Restating Pumping Lemma: If \(L\) is a regular language, then it has a pumping length.

Contrapositive: If \(L\) has no pumping length, then it is nonregular.

The Pumping Lemma cannot be used to prove that a language is regular.

The Pumping Lemma can be used to prove that a language is not regular.

Extra practice: Exercise 1.49 in the book.

Proof strategy: To prove that a language \(L\) is not regular,

Example: \(\Sigma = \{0,1\}\), \(L = \{ 0^n 1^n \mid n \geq 0\}\).

Fix \(p\) an arbitrary positive integer. List strings that are in \(L\) and have length greater than or equal to \(p\):

Pick \(s =\)

Suppose \(s = xyz\) with \(|xy| \leq p\) and \(|y| > 0\).

Then when \(i = \hspace{1in}\), \(xy^i z = \hspace{1in}\)

Example: \(\Sigma = \{0,1\}\), \(L = \{w w^{\mathcal{R}} \mid w \in \{0,1\}^*\}\).

Fix \(p\) an arbitrary positive integer. List strings that are in \(L\) and have length greater than or equal to \(p\):

Pick \(s =\)

Suppose \(s = xyz\) with \(|xy| \leq p\) and \(|y| > 0\).

Then when \(i = \hspace{1in}\), \(xy^i z = \hspace{1in}\)

Example: \(\Sigma = \{0,1\}\), \(L = \{0^j1^k \mid j \geq k \geq 0\}\).

Fix \(p\) an arbitrary positive integer. List strings that are in \(L\) and have length greater than or equal to \(p\):

Pick \(s =\)

Suppose \(s = xyz\) with \(|xy| \leq p\) and \(|y| > 0\).

Then when \(i = \hspace{1in}\), \(xy^i z = \hspace{1in}\)

Example: \(\Sigma = \{0,1\}\), \(L = \{0^n1^m0^n \mid m,n \geq 0\}\).

Fix \(p\) an arbitrary positive integer. List strings that are in \(L\) and have length greater than or equal to \(p\):

Pick \(s =\)

Suppose \(s = xyz\) with \(|xy| \leq p\) and \(|y| > 0\).

Then when \(i = \hspace{1in}\), \(xy^i z = \hspace{1in}\)

Review: Week 4 Monday

Recall: Review quizzes based on class material are assigned each day. These quizzes will help you track and confirm your understanding of the concepts and examples we work in class. Quizzes can be submitted on Gradescope as many times (with no penalty) as you like until the quiz deadline: the three quizzes each week are all due on Friday (with no penalty late submission open until Sunday).

Please complete the review quiz questions on Gradescope about pumping lemma and nonregular sets.

Pre class reading for next time: Page 112

Wednesday April 20

Language \(s \in L\) \(s \notin L\) Is the language regular or nonregular?
\(\{a^nb^n \mid 0 \leq n \leq 5 \}\)
\(\{b^n a^n \mid n \geq 2\}\)
\(\{a^m b^n \mid 0 \leq m\leq n\}\)
\(\{a^m b^n \mid m \geq n+3, n \geq 0\}\)
\(\{b^m a^n \mid m \geq 1, n \geq 3\}\)
\(\{ w \in \{a,b\}^* \mid w = w^\mathcal{R} \}\)
\(\{ ww^\mathcal{R} \mid w\in \{a,b\}^* \}\)

Regular sets are not the end of the story

The next model of computation. Idea: allow some memory of unbounded size. How?

image

Trace the computation of this PDA on the input string \(01\).

Trace the computation of this PDA on the input string \(011\).

Review: Week 4 Wednesday

Please complete the review quiz questions on Gradescope about PDA definitions.

Pre class reading for next time: Page 102

Friday April 22

Definition A pushdown automaton (PDA) is specified by a \(6\)-tuple \((Q, \Sigma, \Gamma, \delta, q_0, F)\) where \(Q\) is the finite set of states, \(\Sigma\) is the input alphabet, \(\Gamma\) is the stack alphabet, \[\delta: Q \times \Sigma_\varepsilon \times \Gamma_\varepsilon \to \mathcal{P}( Q \times \Gamma_\varepsilon)\] is the transition function, \(q_0 \in Q\) is the start state, \(F \subseteq Q\) is the set of accept states.

2 Formal definition

Draw the state diagram of a PDA with \(\Sigma = \Gamma\).

image

Draw the state diagram of a PDA with \(\Sigma \cap \Gamma = \emptyset\).

A PDA recognizing the set \(\{ \hspace{1.5 in} \}\) can be informally described as:

Read symbols from the input. As each 0 is read, push it onto the stack. As soon as 1s are seen, pop a 0 off the stack for each 1 read. If the stack becomes empty and there is exactly one 1 left to read, read that 1 and accept the input. If the stack becomes empty and there are either zero or more than one 1s left to read, or if the 1s are finished while the stack still contains 0s, or if any 0s appear in the input following 1s, reject the input.

State diagram for this PDA:

Consider the state diagram of a PDA with input alphabet \(\Sigma\) and stack alphabet \(\Gamma\).

Label means
\(a, b ; c\) when \(a \in \Sigma\), \(b\in \Gamma\), \(c \in \Gamma\)
\(a, \varepsilon ; c\) when \(a \in \Sigma\), \(c \in \Gamma\)
\(a, b ; \varepsilon\) when \(a \in \Sigma\), \(b\in \Gamma\)
\(a, \varepsilon ; \varepsilon\) when \(a \in \Sigma\)

How does the meaning change if \(a\) is replaced by \(\varepsilon\)?

Note: alternate notation is to replace \(;\) with \(\to\)

For the PDA state diagrams below, \(\Sigma = \{0,1\}\).

Mathematical description of language State diagram of PDA recognizing language
image
image
\(\{ 0^i 1^j 0^k \mid i,j,k \geq 0 \}\)

Review: Week 4 Friday

Please complete the review quiz questions on Gradescope about PDA construction.