
HW5: Recognizability, Decidability, Undecidability, and
Reductions

CSE105Sp22

Due: 5/26/22 at 5pm (no penalty late submission until 8am next morning), via
Gradescope

In this assignment,

You will practice designing and working with Turing machines and their variants. You will use
general constructions and specific machines to explore the classes of recognizable, decidable,
and undecidable languages. You will use computable functions to relate the difficult levels of
languages via mapping reduction.

Resources: To review the topics you are working with for this assignment, see the class material
from Weeks 6, 7, 8. We will post frequently asked questions and our answers to them in a pinned
Piazza post.

Reading and extra practice problems: Chapter 4 exercises 4.1, 4.3, 4.4., 4.5. Chapter 4
Problems 4.29, 4.30, 4.32. Chapter 5 exercises 5.4, 5.5, 5.6, 5.7. Chapter 5 problems 5.10, 5.11,
5.16, 5.18.

Key Concepts: Formal definitions of Turing machines, computations of Turing machines, halt-
ing computations, implementation-level descriptions of Turing machines, high-level descriptions
of Turing machines, recognizable languages, decidable languages, variants of Turing machines,
enumerators, nondeterministic Turing machines, Church-Turing thesis, computational problems,
diagonalization, undecidability, unrecognizability, computable function, mapping reduction.

For all HW assignments:

Weekly homework may be done individually or in groups of up to 3 students. You may switch HW
partners for different HW assignments. The lowest HW score will not be included in your overall
HW average. Please ensure your name(s) and PID(s) are clearly visible on the first page of your
homework submission and then upload the PDF to Gradescope. If working in a group, submit
only one submission per group: one partner uploads the submission through their Gradescope
account and then adds the other group member(s) to the Gradescope submission by selecting
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their name(s) in the “Add Group Members” dialog box. You will need to re-add your group
member(s) every time you resubmit a new version of your assignment. Each homework question
will be graded either for correctness (including clear and precise explanations and justifications of
all answers) or fair effort completeness. You may only collaborate on HW with CSE 105 students
in your group; if your group has questions about a HW problem, you may ask in drop-in help
hours or post a private post (visible only to the Instructors) on Piazza.

All submitted homework for this class must be typed. You can use a word processing editor if
you like (Microsoft Word, Open Office, Notepad, Vim, Google Docs, etc.) but you might find
it useful to take this opportunity to learn LaTeX. LaTeX is a markup language used widely in
computer science and mathematics. The homework assignments are typed using LaTeX and you
can use the source files as templates for typesetting your solutions. To generate state diagrams of
machines, we recommend using Flap.js or JFLAP. Photographs of clearly hand-drawn diagrams
may also be used. We recommend that you submit early drafts to Gradescope so that in case of
any technical difficulties, at least some of your work is present. You may update your submission
as many times as you’d like up to the deadline.

Integrity reminders

• Problems should be solved together, not divided up between the partners. The homework
is designed to give you practice with the main concepts and techniques of the course, while
getting to know and learn from your classmates.

• You may not collaborate on homework with anyone other than your group members. You
may ask questions about the homework in office hours (of the instructor, TAs, and/or
tutors) and on Piazza (as private notes viewable only to the Instructors). You cannot
use any online resources about the course content other than the class material from this
quarter – this is primarily to ensure that we all use consistent notation and definitions we
will use this quarter and also to protect the learning experience you will have when the
‘aha’ moments of solving the problem authentically happen.

• Do not share written solutions or partial solutions for homework with other students in
the class who are not in your group. Doing so would dilute their learning experience and
detract from their success in the class.

You will submit this assignment via Gradescope (https://www.gradescope.com) in the assign-
ment called “HW5CSE105Sp22”.
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Assigned questions

1. (Graded for correctness1)

(a) Give an example of a decidable language L1 whose complement is also decidable. A
complete solution will include either (1) a precise definition of the example language
L1 and an explanation of why it is decidable and why its complement is decidable, or
(2) a sufficiently general and correct argument for why there is no way to choose an
example language to satisfy this requirement. All justifications and arguments should
connect to the relevant definitions and the specific concepts being discussed.

(b) Give an example of a decidable language L2 and a Turing machine M2 such that
L(M2) = L2 but M2 does not decide L2. A complete solution will include either (1)
precise definitions of L2 and M2 and justifications for why L(M2) = L2 and why M2

does not decide L2, or (2) a sufficiently general and correct argument for why there
is no way to choose such a language and machine. For any machines you discuss, you
can choose whether to use high-level descriptions, implementation level descriptions,
or formal definitions. All justifications and arguments should connect to the relevant
definitions and the specific concepts being discussed.

2. (Graded for fair effort completeness2)

Recall that a set X is said to be closed under an operation OP if, for any elements in
X, applying OP to them gives an element in X. For example, the set of integers is closed
under multiplication because if we take any two integers, their product is also an integer.

Suppose M1 and M2 are Turing machines. Consider the following high-level descriptions
of machines that give general constructions based on M1 and M2.

(a) Consider the following construction of a nondeterministic Turing machine:

“On input w

1. Nondeterministically split w into two pieces, i.e. choose x, y such that
w = xy.

2. Simulate running M1 on x.

3. Simulate running M2 on y.

4. If both simulations in steps 2 and 3 accept, accept.”

1This means your solution will be evaluated not only on the correctness of your answers, but on your ability
to present your ideas clearly and logically. You should explain how you arrived at your conclusions, using
mathematically sound reasoning. Whether you use formal proof techniques or write a more informal argument
for why something is true, your answers should always be well-supported. Your goal should be to convince the
reader that your results and methods are sound.

2This means you will get full credit so long as your submission demonstrates honest effort to answer the
question. You will not be penalized for incorrect answers. To demonstrate your honest effort in answering the
question, we ask that you include your attempt to answer *each* part of the question. If you get stuck with your
attempt, you can still demonstrate your effort by explaining where you got stuck and what you did to try to get
unstuck.
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Can this construction be used to prove that the class of Turing-recognizable languages
is closed under concatenation? Briefly justify your answer.

(b) Consider the following construction of an enumerator:

“Without any input

1. Build an enumerator E1 that is equivalent to M1.

2. Build an enumerator E2 that is equivalent to M2.

3. Start E1 running and start E2 running.

4. Initialize a list of all strings that have been printed by E1. Declare the
variable n1 to be the length of this list (initially n1 = 0).

5. Initialize a list of all strings that have been printed by E2 so far. Declare
the variable n2 to be the length of this list (initially n2 = 0).

6. Every time a new string x is printed by E1:

7. Add this string to the list of strings printed by E1 so far.

8. Increment n1 so it stores the current length of the list.

9. For j = 1 . . . n2,

10. Let wj be the jth string in the list of strings printed by E2

11. Print xwj.

12. Every time a new string y is printed by E2:

13. Add this string to the list of strings printed by E2 so far.

14. Increment n2 so it stores the current length of the list.

15. For i = 1 . . . n1,

16. Let ui be the ith string in the list of strings printed by E1

17. Print uiy.”

Can this construction be used to prove that the class of Turing-recognizable languages
is closed under concatenation? Briefly justify your answer.

(c) Consider the following construction of a Turing machine:

“On input w

1. Let n = |w|.
2. Create a two dimensional array of strings sm,j where 0 ≤ m ≤ n and

0 ≤ j ≤ 1.

3. For each 0 ≤ m ≤ n, initialize sm,0 to be the prefix of w of length m and
sm,1 to be the suffix of w of length n−m. In other words, w = sm,0sm,1

and |sm,0| = m, |sm,1| = n−m.

4. For i = 1, 2, . . .

5. For k = 0, . . . , i

6. Run M1 on smin (k,n),0 for (at most) i steps.

7. Run M2 on smin (k,n),1 for (at most) i steps.

8. If both simulations in steps 6 and 7 accept, accept.”
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Can this construction be used to prove that the class of Turing-recognizable languages
is closed under concatenation? Briefly justify your answer.

3. (Graded for fair effort completeness) Recall that

ATM = {⟨M,w⟩ | M is a Turing machine, w is a string, and w ∈ L(M)}

and

HALTTM = {⟨M,w⟩ | M is a Turing machine, w is a string, and M halts on w}

Consider the Turing machines below, with input alphabet Σ = {0, 1}, tape alphabet
{0, 1, }, and state diagrams (with the usual conventions):

(a) Give an example string that is in both ATM and HALTTM and that is related to one
of the two Turing machines whose state diagrams are given above, or explain why
there is no such string.

(b) Give an example string that is in ATM and is not in HALTTM and that is related to
one of the two Turing machines whose state diagrams are given above, or explain why
there is no such string.

(c) Give an example string that is not in ATM and is in HALTTM and that is related to
one of the two Turing machines whose state diagrams are given above, or explain why
there is no such string.

4. (Graded for correctness) Fix Σ = {0, 1} for this question. For each part below, you can
choose sets from the following list:

∅, ATM , ATM , HALTTM , HALTTM , ETM , ETM , EQTM , EQTM ,Σ∗

You may use each set from the list at most once in the examples below. In particular,
you can’t choose A = B = C = D = X = Y = Σ∗.

(a) Find sets A,B for which the computable function

F = “On input x

1. Output ⟨ , 00⟩.”

witnesses the mapping reduction A ≤m B. Justify your answer by proving that, for
all strings x, x ∈ A iff F (x) ∈ B. If no such sets exist, justify why not.
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(b) Find sets C,D for which the computable function

G = “On input x

1. Check if x = ⟨M,w⟩ for M a Turing machine and w a string. If so, go to step 3.

2. If not, output ⟨ , ⟩.
3. Construct the Turing machine M ′

x = “On input y,

1. If y has a positive and odd length, reject.

2. Else, if y has a positive and even length, accept.

3. Otherwise, run M on w and, if the computation halts, accept y.”

4. Output ⟨M ′
x, ⟩.”

witnesses the mapping reduction C ≤m D. Justify your answer by proving that, for
all strings x, x ∈ C iff G(x) ∈ D. If no such sets exist, justify why not.

(c) Find sets X, Y for which the computable function

H = “On input x

1. Check if x = ⟨M,w⟩ for M a Turing machine and w a string. If so, go to step 3.

2. If not, output ⟨ ⟩.
3. Construct the Turing machine M ′

x = “On input y,

1. If y ̸= w, reject.

2. Otherwise, run M on w.

3. If M accepts, accept. If M rejects, reject.”

4. Output ⟨M ′
x⟩.”

witnesses a mapping reduction X ≤m Y . Justify your answer by proving that, for all
strings x, x ∈ X iff H(x) ∈ Y . If no such sets exist, justify why not.
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