A Yot ek 68 fmt numbero b 0's dhd |

L'——' i_o l O < < k% ((AV\ - .\14 "‘K 0*‘ Wq:f:r L mrkmf\m)l\m,\
Show Arat L fig on-tqula’ Using. -

?V‘W\PMS Lewwma

SR1 A on-egatar
langrage could ot
O PUa pivg \enoyih p.
Exameie:

TE Lis a veqular \anguoqe, Hen Trire 1S & number P ‘io:n\;rco:\\:f;;?&
where, 1€ < 1S any string in L of length o Leash o thens
Moy g divided m’m Theee pieces, S= XYz, A Flate XyT r}q
“y|>o TE we can chow et huar’s 2 XYYZ ohoBTETy
- el o possiie vame bor p for L, XyyYZ
ﬂ;& Thon Lis nonrmamie v Yy

. . 2

- ¢or cach 120, ¥y €L c3p Do \‘*’ ol _j__\m\\\

\/\)\/~{.,L f S avlo\‘\—mr\’) and QO C (y (‘(‘) O? \(‘ L

Sinee Xy 2 Po ¥ andy Will Lotn contist 6F ay 63,

Fo, ANy possiL\g \\t\) \[\\/f‘.c WOMNLY < LML v e gm\.,“s -t ey
A (LALY Ay MOy O ay IS, wWwitn would ot Le n L.

|S|> Pubut Heve is no possive way +o dide ¢ nto Xz paris T° SARSE) all dne Cratemtis
MI_)O\)’(. Somﬂ 1< no t

E_U\S\/\"Dovw\ [A\\A‘\‘OW\W\'O\ Bl E S

L: ioﬁ\b l O < a L - % sywmbol to (:;Lgv;/‘_«v“‘;g,
gyl o
\ p o sk

L\ s . .
U v 0,60 1,05¢

o™
«°
7
/)
)

dontt vad — skacic oL\ v
on' -~ \
O S\“H an U oold
w~ AL
D‘:) s\t St o vy |
€ €,
@ ocept State o s

f :8(
WA 'S
(S sr—ac y

CSE 105 Week 5 Discussion

Rachel Lim, Tony Hu

Regular or Non-regular?

A={0%u0|k>0,u e =*}

B={0%1u0X|k>0,u € £*}

‘Dg \}\V\\Oﬂ\o‘ﬂwo{ DS

cov
Regular or Non regular’v\ (7\\9 O
00 1}
- A={0u0 | k>0 € =} - s

Regular! A can be described by the regular expression 0Z*0.

- B={0%1u0%|k>0,u € £*}
Non-regular! Use the pumping lemma to prove a language is non-regular.

Proof: Assume towards contradiction that B is regular and can be pumped. For any positive integer
p, we can find a string &=QP10P € B such that we can partition s into xyz, where x = 0%,y = ob z=
0°10P, |xy| < p, ly| > 0, and a+b+c = p. Let = 2 so xy'z = OP**10P & B because b>0 so p+b # p. Hence,

we have reached a contradiction and B is non-regular. P +b * P

Pushdown Automata (PDA)

- Essentially a NFA with a stack (LIFO)
- Unlike DFAs/NFAs, PDAs has some non-constant memory to work with
- Each computation path when we use non-determinism will have its own stack

- PDAs canrecognize both context free languages and regular languages /’7 b O

Formal Definition of PDA
A PDA is a 6-tuple (Q,%,T,6, qo, F) where Q, %, I, F are all finite sets and

1. @ is the set of states

Y is the input alphabet

I' is the stack alphabet

0:Qx I\ T P(Q x I'.) is the transition functi
Q. ga‘ Ky (Q x I'.) is the transition function

qo € Q is the start state

O A S

F C @ is the set of accept states.

Transitions in PDAs

Assuming the alphabet = {a, b}, how do we interpret each of the following transitions:

- gab
- a,gb
- a,bje
- a,g¢
- g€
- gaE
- g &€
- a/b;a

Types of Transitions in PDAs

Assuming the alphabet = {a, b}, how do we interpret each of the following transitions:

- ga;b //Don'tread any characters from the input, pop “a” from the stack, push “b” onto stack

- a,g b //Read"“a” from the next character in input, don't pop from the stack, push “b” onto stack
- a,b;e //Read"“a” from the next character ininput, pop “b” from the stack, don’'t push onto stack
- a,g ¢ //Read"“a” fromthe next character in input, don’t pop from and don’t push onto stack

- ¢g¢a //Don'tread any characters from the input, don’t pop from the stack, push “a” onto stack
- g a;& //Don’tread any characters from the input, pop “a” from the stack, don’t push onto stack
- g¢€ //Don'tread any characters from the input, don’t pop from and don’t push onto stack

- a,b;a //Read “a” from the next character in input, pop “b” from the stack, push “a” onto stack

Note: similar to NFAs, missing transitions result in “dead” computational paths

(cf. Sipser Exercises 2.6a/7) Consider the following informal description of a PDA:

Read symbols from the input. As each a is read, push a 1 onto the stack. As soon as bs are
seen, pop a 1 off the stack for each b read. If we reach the end of the string and the stack is
nonempty, accept. If the stack becomes empty while we are reading bs, or if we find any as
once we start reading bs, reject.

a) Draw the PDA that corresponds to the description above.
b) What is the language recognized by the PDA?

(cf. Sipser Ezxercises 2.6a/7) Consider the following informal description of a PDA:

Read symbols from the input. As each a is read, push a 1 onto the stack. As soon as bs are
seen, pop a 1 off the stack for each b read. If we reach the end of the string and the stack is
nonempty, accept. If the stack becomes empty while we are reading bs, or if we find any as
once we start reading bs, reject.

a) Draw the PDA that corresponds to the description above.

b, e |

5() — O

(cf. Sipser Ezxercises 2.6a/7) Consider the following informal description of a PDA:

Read symbols from the input. As each a is read, push a 1 onto the stack. As soon as bs are
seen, pop a 1 off the stack for each b read. If we reach the end of the string and the stack is
nonempty, accept. If the stack becomes empty while we are reading bs, or if we find any as

once we start reading bs, reject.
on ey

a) Draw the PDA that corresponds to the description above. (Bonus: write the formal definitign for f l

the PDA) h aab)

(cf. Sipser Exercises 2.6a/7) Consider the following informal description of a PDA:

Read symbols from the input. As each a is read, push a 1 onto the stack. As soon as bs are
seen, pop a 1 off the stack for each b read. If we reach the end of the string and the stack is
nonempty, accept. If the stack becomes empty while we are reading bs, or if we find any as
once we start reading bs, reject.

a) Draw the PDA that corresponds to the description above.
b) What is the language recognized by the PDA? What strings are accepted and rejected by the PDA?

(cf. Sipser Exercises 2.6a/7) Consider the following informal description of a PDA:

Read symbols from the input. As each a is read, push a 1 onto the stack. As soon as bs are
seen, pop a 1 off the stack for each b read. If we reach the end of the string and the stack is
nonempty, accept. If the stack becomes empty while we are reading bs, or if we find any as
once we start reading bs, reject.

a) Draw the PDA that corresponds to the description above.
b) What is the language recognized by the PDA?

Informally, the PDA accepts strings of the form a’s followed by b’s and there are more a’s than b’s.

In set builder notation L={a'b'| 0 << i} & N o b

Notice that the stack does not need to be empty in order to accept a string.

Bonus (if time permits)

Can we construct a PDA for the language L = {0"1"2" | n > 0}?

Bonus (if time permits)

Can we construct a PDA for the language L = {0"1"2" | n > 0}?

No! We only have a single stack so after matching the number of 1s to the number of Os, we don't
memory of the number of 1s and Os anymore to match the number of 2s

Thanks for coming! :)

