
context-free-grammars

Week5 monday

Warmup: Design a CFG to generate the language {aibj | j ≥ i ≥ 0}

Sample derivation:

Design a PDA to recognize the language {aibj | j ≥ i ≥ 0}

CC BY-NC-SA 2.0 Version December 30, 2024 (1)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Theorem 2.20: A language is generated by some context-free grammar if and only if it is recognized by
some push-down automaton.

Definition: a language is called context-free if it is the language generated by a context-free grammar.
The class of all context-free language over a given alphabet Σ is called CFL.

Consequences:

• Quick proof that every regular language is context free

• To prove closure of the class of context-free languages under a given operation, we can choose either
of two modes of proof (via CFGs or PDAs) depending on which is easier

• To fully specify a PDA we could give its 6-tuple formal definition or we could give its input alphabet,
stack alphabet, and state diagram. An informal description of a PDA is a step-by-step description of
how its computations would process input strings; the reader should be able to reconstruct the state
diagram or formal definition precisely from such a descripton. The informal description of a PDA can
refer to some common modules or subroutines that are computable by PDAs:

– PDAs can “test for emptiness of stack” without providing details. How? We can always push
a special end-of-stack symbol, $, at the start, before processing any input, and then use this
symbol as a flag.

– PDAs can “test for end of input” without providing details. How? We can transform a PDA to
one where accepting states are only those reachable when there are no more input symbols.

CC BY-NC-SA 2.0 Version December 30, 2024 (2)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Suppose L1 and L2 are context-free languages over Σ. Goal: L1 ∪ L2 is also context-free.

Approach 1: with PDAs

Let M1 = (Q1,Σ,Γ1, δ1, q1, F1) and M2 = (Q2,Σ,Γ2, δ2, q2, F2) be PDAs with L(M1) = L1 and L(M2) = L2.

Define M =

Approach 2: with CFGs

Let G1 = (V1,Σ, R1, S1) and G2 = (V2,Σ, R2, S2) be CFGs with L(G1) = L1 and L(G2) = L2.

Define G =

CC BY-NC-SA 2.0 Version December 30, 2024 (3)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Suppose L1 and L2 are context-free languages over Σ. Goal: L1 ◦ L2 is also context-free.

Approach 1: with PDAs

Let M1 = (Q1,Σ,Γ1, δ1, q1, F1) and M2 = (Q2,Σ,Γ2, δ2, q2, F2) be PDAs with L(M1) = L1 and L(M2) = L2.

Define M =

Approach 2: with CFGs

Let G1 = (V1,Σ, R1, S1) and G2 = (V2,Σ, R2, S2) be CFGs with L(G1) = L1 and L(G2) = L2.

Define G =

CC BY-NC-SA 2.0 Version December 30, 2024 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week4 friday

Big picture: PDAs were motivated by wanting to add some memory of unbounded size to NFA. How do we
accomplish a similar enhancement of regular expressions to get a syntactic model that is more expressive?

DFA, NFA, PDA: Machines process one input string at a time; the computation of a machine on its input
string reads the input from left to right.

Regular expressions: Syntactic descriptions of all strings that match a particular pattern; the language
described by a regular expression is built up recursively according to the expression’s syntax

Context-free grammars: Rules to produce one string at a time, adding characters from the middle,
beginning, or end of the final string as the derivation proceeds.

Definitions below are on pages 101-102.

Term Typical symbol Meaning
or Notation

Context-free grammar (CFG) G G = (V,Σ, R, S)
The set of variables V Finite set of symbols that represent phases in pro-

duction pattern
The set of terminals Σ Alphabet of symbols of strings generated by CFG

V ∩ Σ = ∅
The set of rules R Each rule is A → u with A ∈ V and u ∈ (V ∪ Σ)∗

The start variable S Usually on left-hand-side of first/ topmost rule

Derivation S ⇒ · · · ⇒ w Sequence of substitutions in a CFG (also written
S ⇒∗ w). At each step, we can apply one rule
to one occurrence of a variable in the current string
by substituting that occurrence of the variable with
the right-hand-side of the rule. The derivation must
end when the current string has only terminals (no
variables) because then there are no instances of
variables to apply a rule to.

Language generated by the
context-free grammar G

L(G) The set of strings for which there is a derivation in
G. Symbolically: {w ∈ Σ∗ | S ⇒∗ w} i.e.

{w ∈ Σ∗ | there is derivation in G that ends in w}

Context-free language A language that is the language generated by some
context-free grammar

CC BY-NC-SA 2.0 Version December 30, 2024 (5)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Examples of context-free grammars, derivations in those grammars, and the languages gen-
erated by those grammars

G1 = ({S}, {0}, R, S) with rules

S → 0S

S → 0

In L(G1) . . .

Not in L(G1) . . .

CC BY-NC-SA 2.0 Version December 30, 2024 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

G2 = ({S}, {0, 1}, R, S)
S → 0S | 1S | ε

In L(G2) . . .

Not in L(G2) . . .

({S, T}, {0, 1}, R, S) with rules

S → T1T1T1T

T → 0T | 1T | ε

In L(G3) . . .

Not in L(G3) . . .

CC BY-NC-SA 2.0 Version December 30, 2024 (7)

https://creativecommons.org/licenses/by-nc-sa/2.0/

G4 = ({A,B}, {0, 1}, R,A) with rules

A → 0A0 | 0A1 | 1A0 | 1A1 | 1

In L(G4) . . .

Not in L(G4) . . .

CC BY-NC-SA 2.0 Version December 30, 2024 (8)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Design a CFG to generate the language {anbn | n ≥ 0}

Sample derivation:

CC BY-NC-SA 2.0 Version December 30, 2024 (9)

https://creativecommons.org/licenses/by-nc-sa/2.0/

