
Week5

Week 5 at a glance

Textbook reading: Section 2.2, 2.1.
Before Monday, read Theorem 2.20.

Before Wednesday, read Example 2.18 (page 114).

Before Friday, read Figure 3.1.

For Week 6 Monday: Page 165-166 Introduction to Section 3.1.

We will be learning and practicing to:
• Clearly and unambiguously communicate computational ideas using appropriate formalism. Translate
across levels of abstraction.

– Describe and use models of computation that don’t involve state machines.

∗ Use context-free grammars and relate them to languages and pushdown au-
tomata.

– Use precise notation to formally define the state diagram of a Turing machine

– Use clear English to describe computations of Turing machines informally.

∗ Design a PDA that recognizes a given language.

– Give examples of sets that are context-free (and prove that they are).

∗ State the definition of the class of context-free languages

∗ Explain the limits of the class of context-free languages

∗ Identify some context-free sets and some non-context-free sets

• Know, select and apply appropriate computing knowledge and problem-solving techniques. Reason
about computation and systems.

– Describe and prove closure properties of classes of languages under certain operations.

∗ Apply a general construction to create a new PDA or CFG from an example
one.

∗ Formalize a general construction from an informal description of it.

∗ Use general constructions to prove closure properties of the class of context-free
langugages.

∗ Use counterexamples to prove non-closure properties of the class of context-free
langugages.

TODO:

Schedule your Test 1 Attempt 1, Test 2 Attempt 1, Test 1 Attempt 2, and Test 2 Attempt 2 times at
PrairieTest (http://us.prairietest.com)

Review Quiz 5 on PrairieLearn (http://us.prairielearn.com), complete by Sunday 11/4/2024

CC BY-NC-SA 2.0 Version December 30, 2024 (1)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Monday: Context-free languages

Warmup: Design a CFG to generate the language {aibj | j ≥ i ≥ 0}

Sample derivation:

Design a PDA to recognize the language {aibj | j ≥ i ≥ 0}

CC BY-NC-SA 2.0 Version December 30, 2024 (2)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Theorem 2.20: A language is generated by some context-free grammar if and only if it is recognized by
some push-down automaton.

Definition: a language is called context-free if it is the language generated by a context-free grammar.
The class of all context-free language over a given alphabet Σ is called CFL.

Consequences:

• Quick proof that every regular language is context free

• To prove closure of the class of context-free languages under a given operation, we can choose either
of two modes of proof (via CFGs or PDAs) depending on which is easier

• To fully specify a PDA we could give its 6-tuple formal definition or we could give its input alphabet,
stack alphabet, and state diagram. An informal description of a PDA is a step-by-step description of
how its computations would process input strings; the reader should be able to reconstruct the state
diagram or formal definition precisely from such a descripton. The informal description of a PDA can
refer to some common modules or subroutines that are computable by PDAs:

– PDAs can “test for emptiness of stack” without providing details. How? We can always push
a special end-of-stack symbol, $, at the start, before processing any input, and then use this
symbol as a flag.

– PDAs can “test for end of input” without providing details. How? We can transform a PDA to
one where accepting states are only those reachable when there are no more input symbols.

CC BY-NC-SA 2.0 Version December 30, 2024 (3)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Suppose L1 and L2 are context-free languages over Σ. Goal: L1 ∪ L2 is also context-free.

Approach 1: with PDAs

Let M1 = (Q1,Σ,Γ1, δ1, q1, F1) and M2 = (Q2,Σ,Γ2, δ2, q2, F2) be PDAs with L(M1) = L1 and L(M2) = L2.

Define M =

Approach 2: with CFGs

Let G1 = (V1,Σ, R1, S1) and G2 = (V2,Σ, R2, S2) be CFGs with L(G1) = L1 and L(G2) = L2.

Define G =

CC BY-NC-SA 2.0 Version December 30, 2024 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Suppose L1 and L2 are context-free languages over Σ. Goal: L1 ◦ L2 is also context-free.

Approach 1: with PDAs

Let M1 = (Q1,Σ,Γ1, δ1, q1, F1) and M2 = (Q2,Σ,Γ2, δ2, q2, F2) be PDAs with L(M1) = L1 and L(M2) = L2.

Define M =

Approach 2: with CFGs

Let G1 = (V1,Σ, R1, S1) and G2 = (V2,Σ, R2, S2) be CFGs with L(G1) = L1 and L(G2) = L2.

Define G =

CC BY-NC-SA 2.0 Version December 30, 2024 (5)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Wednesday: Context-free and non-context-free languages

Summary

Over a fixed alphabet Σ, a language L is regular

iff it is described by some regular expression
iff it is recognized by some DFA
iff it is recognized by some NFA

Over a fixed alphabet Σ, a language L is context-free

iff it is generated by some CFG
iff it is recognized by some PDA

Fact: Every regular language is a context-free language.

Fact: There are context-free languages that are not nonregular.

Fact: There are countably many regular languages.

Fact: There are countably infinitely many context-free languages.

Consequence: Most languages are not context-free!

CC BY-NC-SA 2.0 Version December 30, 2024 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Examples of non-context-free languages

{anbncn | 0 ≤ n, n ∈ Z}
{aibjck | 0 ≤ i ≤ j ≤ k, i ∈ Z, j ∈ Z, k ∈ Z}
{ww | w ∈ {0, 1}∗}

(Sipser Ex 2.36, Ex 2.37, 2.38)

There is a Pumping Lemma for CFL that can be used to prove a specific language is non-context-free: If A
is a context-free language, there is a number p where, if s is any string in A of length at least p, then s may
be divided into five pieces s = uvxyz where (1) for each i ≥ 0, uvixyiz ∈ A, (2) |uv| > 0, (3) |vxy| ≤ p.
We will not go into the details of the proof or application of Pumping Lemma for CFLs this quarter.

Recall: A set X is said to be closed under an operation OP if, for any elements in X, applying OP to
them gives an element in X.

True/False Closure claim
True The set of integers is closed under multiplication.

∀x∀y ((x ∈ Z ∧ y ∈ Z) → xy ∈ Z)
True For each set A, the power set of A is closed under intersection.

∀A1∀A2 ((A1 ∈ P(A) ∧ A2 ∈ P(A) ∈ Z) → A1 ∩ A2 ∈ P(A))
The class of regular languages over Σ is closed under complementation.

The class of regular languages over Σ is closed under union.

The class of regular languages over Σ is closed under intersection.

The class of regular languages over Σ is closed under concatenation.

The class of regular languages over Σ is closed under Kleene star.

The class of context-free languages over Σ is closed under complementation.

The class of context-free languages over Σ is closed under union.

The class of context-free languages over Σ is closed under intersection.

The class of context-free languages over Σ is closed under concatenation.

The class of context-free languages over Σ is closed under Kleene star.

CC BY-NC-SA 2.0 Version December 30, 2024 (7)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Friday: Turing machines

We are ready to introduce a formal model that will capture a notion of general purpose computation.

• Similar to DFA, NFA, PDA: input will be an arbitrary string over a fixed alphabet.

• Different from NFA, PDA: machine is deterministic.

• Different from DFA, NFA, PDA: read-write head can move both to the left and to the right, and can
extend to the right past the original input.

• Similar to DFA, NFA, PDA: transition function drives computation one step at a time by moving
within a finite set of states, always starting at designated start state.

• Different from DFA, NFA, PDA: the special states for rejecting and accepting take effect immediately.

(See more details: Sipser p. 166)

Formally: a Turing machine is M = (Q,Σ,Γ, δ, q0, qaccept, qreject) where δ is the transition function

δ : Q× Γ → Q× Γ× {L,R}

The computation of M on a string w over Σ is:

• Read/write head starts at leftmost position on tape.

• Input string is written on |w|-many leftmost cells of tape, rest of the tape cells have the blank symbol.
Tape alphabet is Γ with ∈ Γ and Σ ⊆ Γ. The blank symbol /∈ Σ.

• Given current state of machine and current symbol being read at the tape head, the machine transitions
to next state, writes a symbol to the current position of the tape head (overwriting existing symbol),
and moves the tape head L or R (if possible).

• Computation ends if and when machine enters either the accept or the reject state. This is called
halting. Note: qaccept ̸= qreject.

The language recognized by the Turing machine M , is L(M) = {w ∈ Σ∗ | w is accepted by M},
which is defined as

{w ∈ Σ∗ | computation of M on w halts after entering the accept state}

CC BY-NC-SA 2.0 Version December 30, 2024 (8)

https://creativecommons.org/licenses/by-nc-sa/2.0/

q0start q1

qacc qrej

□;□, R

0;□, R

0;□, R

□;□, R

0;□, R
□;□, R

0;□, R
□;□, R

Formal

definition:

Sample computation:

q0 ↓
0 0 0

The language recognized by this machine is . . .

Describing Turing machines (Sipser p. 185) To define a Turing machine, we could give a

• Formal definition: the 7-tuple of parameters including set of states, input alphabet, tape alphabet,
transition function, start state, accept state, and reject state; or,

• Implementation-level definition: English prose that describes the Turing machine head move-
ments relative to contents of tape, and conditions for accepting / rejecting based on those contents.

• High-level description: description of algorithm (precise sequence of instructions), without im-
plementation details of machine. As part of this description, can “call” and run another TM as a
subroutine.

CC BY-NC-SA 2.0 Version December 30, 2024 (9)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Fix Σ = {0, 1}, Γ = {0, 1, } for the Turing machines with the following state diagrams:

q0start qacc

□;□, R

Example of string accepted:
Example of string rejected:

Implementation-level description

High-level description

qrejstart qacc

Example of string accepted:
Example of string rejected:

Implementation-level description

High-level description

CC BY-NC-SA 2.0 Version December 30, 2024 (10)

https://creativecommons.org/licenses/by-nc-sa/2.0/

q0start qacc
□;□, R

Example of string accepted:
Example of string rejected:

Implementation-level description

High-level description

q0start qacc

1;□, R
0;□, R
□;□, R

Example of string accepted:
Example of string rejected:

Implementation-level description

High-level description

CC BY-NC-SA 2.0 Version December 30, 2024 (11)

https://creativecommons.org/licenses/by-nc-sa/2.0/

