
HW5CSE105F24: Homework assignment 5

CSE105F24

Due: November 19, 2024 at 5pm, via Gradescope

In this assignment,

You will practice analyzing, designing, and working with Turing machines. You will use general
constructions and specific machines to explore the classes of recognizable and decidable languages.
You will explore various ways to encode machines as strings so that computational problems can
be recognized.

Resources: To review the topics for this assignment, see the class material from Weeks 6 and
7. We will post frequently asked questions and our answers to them in a pinned Piazza post.

Reading and extra practice problems: Sipser Sections 3.1, 3.3, 4.1 Chapter 3 exercises 3.1,
3.2, 3.5, 3.8. Chapter 4 exercises 4.1, 4.2, 4.3, 4.4, 4.5.

For all HW assignments: Weekly homework may be done individually or in groups of up
to 3 students. You may switch HW partners for different HW assignments. Please ensure
your name(s) and PID(s) are clearly visible on the first page of your homework submission and
then upload the PDF to Gradescope. If working in a group, submit only one submission per
group: one partner uploads the submission through their Gradescope account and then adds the
other group member(s) to the Gradescope submission by selecting their name(s) in the “Add
Group Members” dialog box. You will need to re-add your group member(s) every time you
resubmit a new version of your assignment. Each homework question will be graded either for
correctness (including clear and precise explanations and justifications of all answers) or fair
effort completeness. For “graded for correctness” questions: collaboration is allowed only with
CSE 105 students in your group; if your group has questions about a problem, you may ask in
drop-in help hours or post a private post (visible only to the Instructors) on Piazza. For “graded
for completeness” questions: collaboration is allowed with any CSE 105 students this quarter; if
your group has questions about a problem, you may ask in drop-in help hours or post a public
post on Piazza.

All submitted homework for this class must be typed. You can use a word processing editor if
you like (Microsoft Word, Open Office, Notepad, Vim, Google Docs, etc.) but you might find
it useful to take this opportunity to learn LaTeX. LaTeX is a markup language used widely in

Copyright Mia Minnes, 2024, Version December 30, 2024 (1)

computer science and mathematics. The homework assignments are typed using LaTeX and you
can use the source files as templates for typesetting your solutions. To generate state diagrams of
machines,you can (1) use the LaTex tikzpicture environment (see templates in the class notes),
or (2)) use the software tools Flap.js or JFLAP described in the class syllabus (and include a
screenshot in your PDF), or (3) you can carefully and clearly hand-draw the diagram and take a
picture and include it in your PDF. We recommend that you submit early drafts to Gradescope
so that in case of any technical difficulties, at least some of your work is present. You may update
your submission as many times as you’d like up to the deadline.

Integrity reminders

• Problems should be solved together, not divided up between the partners. The homework
is designed to give you practice with the main concepts and techniques of the course, while
getting to know and learn from your classmates.

• You may not collaborate on homework questions graded for correctness with anyone other
than your group members. You may ask questions about the homework in office hours (of
the instructor, TAs, and/or tutors) and on Piazza (as private notes viewable only to the
Instructors). You cannot use any online resources about the course content other than the
class material from this quarter – this is primarily to ensure that we all use consistent nota-
tion and definitions (aligned with the textbook) and also to protect the learning experience
you will have when the ‘aha’ moments of solving the problem authentically happen.

• Do not share written solutions or partial solutions for homework with other students in
the class who are not in your group. Doing so would dilute their learning experience and
detract from their success in the class.

You will submit this assignment via Gradescope (https://www.gradescope.com) in the assign-
ment called “hw5CSE105F24”.

Assigned questions

1. Classifying languages (10 points): Our first example of a more complicated Turing machine
was of a Turing machine that recognized the language {w#w | w ∈ {0, 1}∗}, which we know is
not context-free. Let’s call that Turing machine M0. The language

L = {ww | w ∈ {0, 1}∗}

is also not context-free.

(a) (Graded for correctness) 1 Choose an example string of length 4 in L that is in not in

1This means your solution will be evaluated not only on the correctness of your answers, but on your ability
to present your ideas clearly and logically. You should explain how you arrived at your conclusions, using
mathematically sound reasoning. Whether you use formal proof techniques or write a more informal argument
for why something is true, your answers should always be well-supported. Your goal should be to convince the
reader that your results and methods are sound.

Copyright Mia Minnes, 2024, Version December 30, 2024 (2)

https://www.gradescope.com

{w#w | w ∈ {0, 1}∗} and describe the computation of the Turing machine M0 on your
example string. Include the contents of the tape, the state of the machine, and the location
of the read/write head at each step in the computation.

(b) (Graded for completeness) 2 Explain why the Turing machine from the textbook and class
that recognized {w#w | w ∈ {0, 1}∗} does not recognize {ww | w ∈ {0, 1}∗}. Use your
example to explain why M0 doesn’t recognize L.

(c) (Graded for completeness) Explain how you would change M0 to get a new Turing machine
that does recognize L. Describe this new Turing machine using both an implementation-
level definition and a state diagram of the Turing machine. You may use all our usual
conventions for state diagrams of Turing machines (we do not include the node for the
reject state qrej and any missing transitions in the state diagram have value (qrej,□, R);
b → R label means b → b, R).

2. Closure (18 points): Suppose M is a Turing machine over the alphabet {0, 1}. Let s1, s2, . . .
be a list of all strings in {0, 1}∗ in string (shortlex) order. We define a new Turing machine by
giving its high-level description as follows:

Mnew = “On input w :

1. For n = 1, 2, . . .

2. For j = 1, 2, . . . n

3. For k = 1, 2, . . . , n

4. Run the computation of M on sjwsk

5. If it accepts, accept.

6. If it rejects, go to the next iteration of the loop”

Recall the definitions we have: For each language L over the alphabet Σ1 = {0, 1}, we have the
associated sets of strings

SUBSTRING(L) = {w ∈ Σ∗
1 | there exist x, y ∈ Σ∗

1 such that xwy ∈ L}

and
EXTEND(L) = {w ∈ Σ∗

1 | w = uv for some strings u ∈ L and v ∈ Σ∗
1}

(a) (Graded for correctness) Prove that this Turing machine construction cannot be used to
prove that the class of decidable languages over {0, 1} is closed under the EXTEND
operation. A complete and correct answer will give a counterexample which is a set A
over Σ1 that is decidable, along with a definition of Turing machine MA that decides A

2This means you will get full credit so long as your submission demonstrates honest effort to answer the
question. You will not be penalized for incorrect answers. To demonstrate your honest effort in answering the
question, we expect you to include your attempt to answer *each* part of the question. If you get stuck with
your attempt, you can still demonstrate your effort by explaining where you got stuck and what you did to try
to get unstuck.

Copyright Mia Minnes, 2024, Version December 30, 2024 (3)

(with a justification why this Turing machine accepts all strings in A and rejects all strings
not in A), and then either a description of the language of Mnew that results when setting
the Turing machine M = MA and an explanation why L(Mnew) ̸= EXTEND(A) or a
description why Mnew is not a decider and therefore can’t witness that EXTEND(A) is
decidable.

(b) (Graded for correctness) Prove that this Turing machine construction cannot be used to
prove that the class of recognizable languages over {0, 1} is closed under the SUBSTRING
set operation. A complete and correct answer will give a counterexample of a specific
language B and Turing machine MB recognizing it (with a justification why this Turing
machine accepts all and only strings in B), and then a description of the language of
Mnew that results when setting the Turing machine M = MB and an explanation why
L(Mnew) ̸= SUBSTRING(B)

(c) (Graded for completeness) Define a new construction by slightly modifiying this one that
can be used to prove that the class of recognizable languages over {0, 1} is closed under
SUBSTRING. Justify that your construction works. The proof of correctness for the
closure claim can be structured like: “Let L1 be a recognizable language over {0, 1} and
assume we are given a Turing machine M1 so that L(M1) = L1. Consider the new Turing
machine Mnew defined above. We will show that L(Mnew) = SUBSTRING(L1)... com-
plete the proof by proving subset inclusion in two directions, by tracing the relevant Turing
machine computations”

(d) (Graded for completeness) Prove that the class of recognizable languages over {0, 1} is closed
under EXTEND.

3. Computational problems (12 points): Recall the definitions of some example computa-
tional problems from class

Copyright Mia Minnes, 2024, Version December 30, 2024 (4)

Acceptance problem

. . . for DFA ADFA {⟨B,w⟩ | B is a DFA that accepts input string w}

. . . for NFA ANFA {⟨B,w⟩ | B is a NFA that accepts input string w}

. . . for regular expressions AREX {⟨R,w⟩ | R is a regular expression that generates input string w}

. . . for CFG ACFG {⟨G,w⟩ | G is a context-free grammar that generates input string w}

. . . for PDA APDA {⟨B,w⟩ | B is a PDA that accepts input string w}

Language emptiness testing

. . . for DFA EDFA {⟨A⟩ | A is a DFA and L(A) = ∅}

. . . for NFA ENFA {⟨A⟩ | A is a NFA and L(A) = ∅}

. . . for regular expressions EREX {⟨R⟩ | R is a regular expression and L(R) = ∅}

. . . for CFG ECFG {⟨G⟩ | G is a context-free grammar and L(G) = ∅}

. . . for PDA EPDA {⟨A⟩ | A is a PDA and L(A) = ∅}

Language equality testing

. . . for DFA EQDFA {⟨A,B⟩ | A and B are DFAs and L(A) = L(B)}

. . . for NFA EQNFA {⟨A,B⟩ | A and B are NFAs and L(A) = L(B)}

. . . for regular expressions EQREX {⟨R,R′⟩ | R and R′ are regular expressions and L(R) = L(R′)}

. . . for CFG EQCFG {⟨G,G′⟩ | G and G′ are CFGs and L(G) = L(G′)}

. . . for PDA EQPDA {⟨A,B⟩ | A and B are PDAs and L(A) = L(B)}

(a) (Graded for completeness) Pick five of the computational problems above and give examples
(preferably different from the ones we talked about in class) of strings that are in each of
the corresponding languages. Remember to use the notation ⟨· · · ⟩ to denote the string
encoding of relevant objects. Extension, not for credit: Explain why it’s hard to write a
specific string of 0s and 1s and make a claim about membership in one of these sets.

(b) (Graded for completeness) Computational problems can also be defined about Turing ma-
chines. Consider the two high-level descriptions of Turing machines below. Reverse-engineer
them to define the computational problem that is being recognized, where L(MDFA) is the
language corresponding to this computational problem about DFA and L(MTM) is the lan-
guage corresponding to this computational problem about Turing machines. Hint: the
computational problem is not acceptance, language emptiness, or language equality (but is
related to one of them).

Let s1, s2, . . . be a list of all strings in {0, 1}∗ in string (shortlex) order. Consider the

Copyright Mia Minnes, 2024, Version December 30, 2024 (5)

following Turing machines

MDFA = “On input ⟨D⟩ where D is a DFA :

1. for i = 1, 2, 3, . . .

2. Run D on si

3. If it accepts, accept.

4. If it rejects, go to the next iteration of the loop”

and

MTM = “On input ⟨T ⟩ where T is a Turing machine :

1. for i = 1, 2, 3, . . .

2. Run T for i steps on each input s1, s2, . . . , si in turn

3. If T has accepted any of these, accept.

4. Otherwise, go to the next iteration of the loop”

4. Computational problems (10 points): For each of the following statements, determine if it
is true or false. Clearly label your choice by starting your solution with True or False and then
provide a justification for your answer.

(a) (Graded for correctness) Prove that the language

{⟨D⟩ | D is an NFA over {0, 1} and L(D) = L(0∗ ∪ 1∗)}

is decidable.

(b) (Graded for correctness) Prove that the language

{⟨R1, R2⟩ | R1, R2 are regular expressions over {0, 1} and L(R1) ⊆ L(R2)}

is decidable.

Copyright Mia Minnes, 2024, Version December 30, 2024 (6)

