
HW2CSE105F24: Homework assignment 2

CSE105F24

Due: October 15th at 5pm, via Gradescope

In this assignment,

You will practice designing multiple representations of regular languages and working with gen-
eral constructions of automata to demonstrate the richness of the class of regular languages.

Resources: To review the topics for this assignment, see the class material from Week 2. We
will post frequently asked questions and our answers to them in a pinned Piazza post.

Reading and extra practice problems: Sipser Section 1.1, 1.2, 1.3. Chapter 1 exercises 1.4,
1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11, 1.12, 1.14, 1.15, 1.16, 1.17, 1.19, 1.20, 1.21, 1.22. Chapter 1
problem 1.51.

For all HW assignments: Weekly homework may be done individually or in groups of up
to 3 students. You may switch HW partners for different HW assignments. Please ensure
your name(s) and PID(s) are clearly visible on the first page of your homework submission and
then upload the PDF to Gradescope. If working in a group, submit only one submission per
group: one partner uploads the submission through their Gradescope account and then adds the
other group member(s) to the Gradescope submission by selecting their name(s) in the “Add
Group Members” dialog box. You will need to re-add your group member(s) every time you
resubmit a new version of your assignment. Each homework question will be graded either for
correctness (including clear and precise explanations and justifications of all answers) or fair
effort completeness. For “graded for correctness” questions: collaboration is allowed only with
CSE 105 students in your group; if your group has questions about a problem, you may ask in
drop-in help hours or post a private post (visible only to the Instructors) on Piazza. For “graded
for completeness” questions: collaboration is allowed with any CSE 105 students this quarter; if
your group has questions about a problem, you may ask in drop-in help hours or post a public
post on Piazza.

All submitted homework for this class must be typed. You can use a word processing editor if
you like (Microsoft Word, Open Office, Notepad, Vim, Google Docs, etc.) but you might find
it useful to take this opportunity to learn LaTeX. LaTeX is a markup language used widely in
computer science and mathematics. The homework assignments are typed using LaTeX and you

Copyright Mia Minnes, 2024, Version December 30, 2024 (1)



can use the source files as templates for typesetting your solutions. To generate state diagrams of
machines,you can (1) use the LaTex tikzpicture environment (see templates in the class notes),
or (2)) use the software tools Flap.js or JFLAP described in the class syllabus (and include a
screenshot in your PDF), or (3) you can carefully and clearly hand-draw the diagram and take a
picture and include it in your PDF. We recommend that you submit early drafts to Gradescope
so that in case of any technical difficulties, at least some of your work is present. You may update
your submission as many times as you’d like up to the deadline.

Integrity reminders

• Problems should be solved together, not divided up between the partners. The homework
is designed to give you practice with the main concepts and techniques of the course, while
getting to know and learn from your classmates.

• You may not collaborate on homework questions graded for correctness with anyone other
than your group members. You may ask questions about the homework in office hours (of
the instructor, TAs, and/or tutors) and on Piazza (as private notes viewable only to the
Instructors). You cannot use any online resources about the course content other than the
class material from this quarter – this is primarily to ensure that we all use consistent nota-
tion and definitions (aligned with the textbook) and also to protect the learning experience
you will have when the ‘aha’ moments of solving the problem authentically happen.

• Do not share written solutions or partial solutions for homework with other students in
the class who are not in your group. Doing so would dilute their learning experience and
detract from their success in the class.

You will submit this assignment via Gradescope (https://www.gradescope.com) in the assign-
ment called “hw2CSE105F24”.

Assigned questions

1. Automata design (12 points): As background to this question, recall that integers can be
represented using base b expansions, for any convenient choice of base b. The precise definition
is: for b an integer greater than 1 and n a positive integer, the base b expansion of n is defined
to be

(ak−1 · · · a1a0)b
where k is a positive integer, a0, a1, . . . , ak−1 are nonnegative integers less than b, ak−1 ̸= 0, and

n =
k−1∑
i=0

aib
i

Notice: The base b expansion of a positive integer n is a string over the alphabet {x ∈ Z | 0 ≤
x < b} whose leftmost character is nonzero.

Copyright Mia Minnes, 2024, Version December 30, 2024 (2)

https://www.gradescope.com


An important property of base b expansions of integers is that, for each integer b greater than 1,
each positive integer n = (ak−1 · · · a1a0)b, and each nonnegative integer a less than b,

bn+ a = (ak−1 · · · a1a0a)b

In other words, shifting the base b expansion to the left results in multiplying the integer value
by the base. In this question we’ll explore building deterministic finite automata that recognize
languages that correspond to useful sets of integers.

(a) (Graded for completeness) 1 Design a DFA that recognizes the set of binary (base 2) ex-
pansions of positive integers that are powers of 2. A complete solution will include the
state diagram of your DFA and a brief justification of your construction by explaining the
role each state plays in the machine, as well as a brief justification about how the strings
accepted and rejected by the machine connect to the specified language.

Hints: (1) A power of 2 is an integer x that can be written as 2y for some nonnegative
integer y, (2) the DFA should accept the strings 100, 10 and 100000 and should reject the
strings 010, 1101, and ε (can you see why?).

(b) (Graded for completeness) Consider arbitrary positive integer m. Design a DFA that rec-
ognizes the set of binary (base 2) expansions of positive integers that are multiples of m.
A complete solution will include the formal definition of your DFA (paramterized by m)
and a brief justification of your construction by explaining the role each state plays in the
machine, as well as a brief justification about how the strings accepted and rejected by the
machine connect to the specified language.

Hints: (1) Consider having a state for each possible remainder upon division by m. (2) To
determine transitions, notice that reading a new character will shift what we already read
over by one slot.

(c) (Graded for correctness) 2 Choose a positive integer m0 between 5 and 8 (inclusive) and
draw the state diagram of a DFA recognizing the following language over {0, 1, 2, 3}

{w ∈ {0, 1, 2, 3}∗ | w is a base 4 expansion of a positive integer that is a multiple of m0}

A complete solution will include the state diagram of your DFA and a brief justification of
your construction by explaining the role each state plays in the machine, as well as a brief
justification about how the strings accepted and rejected by the machine connect to the
specified language.

1This means you will get full credit so long as your submission demonstrates honest effort to answer the
question. You will not be penalized for incorrect answers. To demonstrate your honest effort in answering the
question, we expect you to include your attempt to answer *each* part of the question. If you get stuck with
your attempt, you can still demonstrate your effort by explaining where you got stuck and what you did to try
to get unstuck.

2This means your solution will be evaluated not only on the correctness of your answers, but on your ability
to present your ideas clearly and logically. You should explain how you arrived at your conclusions, using
mathematically sound reasoning. Whether you use formal proof techniques or write a more informal argument
for why something is true, your answers should always be well-supported. Your goal should be to convince the
reader that your results and methods are sound.

Copyright Mia Minnes, 2024, Version December 30, 2024 (3)



Bonus extension to think about (ungraded): Which other languages related to sets of integers can
be proved to be regular using a similar strategy?

2. Nondeterminism (15 points): For this question, the alphabet is {a, b}.

(a) (Graded for completeness) Design a DFA that recognizes the language

{w ∈ {a, b}∗ | w contains at most one a and at least two bs}

You can design this DFA directly or use the constructions from class (and the footnote to
Theorem 1.25 in the book) to build this DFA from DFA for the simpler languages that are
intersected to give this language.

A complete solution will include the state diagram of your DFA and a brief justification of
your construction either by explaining the role each state plays in the machine, as well as
a brief justification about how the strings accepted and rejected by the machine connect to
the specified language, or by justifying the design of the DFA for the simpler languages and
then describing how the Theorem was used.

(b) (Graded for correctness) Design a NFA with at most 6 states that recognizes the language

{w ∈ {a, b}∗ | w contains at most one a and at least two bs}

A complete solution will include the state diagram of your NFA and a brief justification of
your construction by explaining the role each state plays in the machine, as well as a brief
justification about how the strings accepted and rejected by the machine connect to the
specified language. Give one example string in the language and explain the computation
of the NFA that witnesses that the machine accepts this string. Also, give one example
string not in the language and explain why the NFA rejects this string.

(c) (Graded for correctness) Design a NFA with at most 6 states that recognizes the language

{w ∈ {a, b}∗ | w contains at most one a or at least two bs}

A complete solution will include the state diagram of your NFA and a brief justification of
your construction by explaining the role each state plays in the machine, as well as a brief
justification about how the strings accepted and rejected by the machine connect to the
specified language. Give one example string in the language and explain the computation
of the NFA that witnesses that the machine accepts this string. Also, give one example
string not in the language and explain why the NFA rejects this string.

Bonus extension to think about (ungraded): Did you need all 6 states? Could you design DFA
with 6 states that recognize each of these langauges?

3. General constructions (15 points): In this question, you’ll practice working with formal
general constructions for NFAs and translating between state diagrams and formal definitions.

Copyright Mia Minnes, 2024, Version December 30, 2024 (4)



(a) (Graded for correctness) Consider the following general construction: LetN1 = (Q,Σ, δ1, q1, F1)
be a NFA and assume that q0 /∈ Q. Define the new NFA N2 = (Q ∪ {q0},Σ, δ2, q0, {q1})
where

δ2 : (Q ∪ {q0})× Σε → P(Q ∪ {q0})
is defined by

δ2(q, a) =


{q′ ∈ Q | q ∈ δ1(q

′, a)} if q ∈ Q, a ∈ Σε

F1 if q = q0, a = ε

∅ if q = q0, a ∈ Σ

Illustrate this construction by defining a specific example NFA N1 and applying the con-
struction above to create the new NFA N2. Your example NFA should

• Have exactly four states (all reachable from the start state),

• Accept at least one string and reject at least one string, and

• Not have any states labelled q0.

Apply the construction above to create the new NFA. A complete submission will include
the state diagram of your example NFA N1 and the state diagram of the NFA N2 resulting
from this construction and a precise and clear description of L(N1) and L(N2), justified by
explaining the role each state plays in the machine, as well as a brief justification about
how the strings accepted and rejected by the machine connect to the language.

(b) In Week 2’s review quiz, we saw the definition that a set X is said to be closed under an
operation if, for any elements in X, applying to them gives an element in X. For example,
the set of integers is closed under multiplication because if we take any two integers, their
product is also an integer .

Recall the definitions we have: For each language L over the alphabet Σ1 = {0, 1}, we have
the associated set of strings

EXTEND(L) = {w ∈ Σ∗
1 | w = uv for some strings u ∈ L and v ∈ Σ∗

1}

We will prove that the collection of languages over {0, 1} that are each recognizable by some
NFA is closed under the EXTEND operation.

i. (Graded for completeness) As a helpful tool in our construction3, prove that every NFA
can be converted to an equivalent one that has a single accept state. Note: this is
exercise 1.11 in the textbook.

ii. (Graded for correctness) Prove that the collection of languages over {0, 1} that are
each recognizable by some NFA is closed under the EXTEND operation. You can
assume that you are given a NFA with a single accept state N = (Q, {0, 1}, δ, q0, {qacc})
and you need to define a new NFA, Nnew = (Qnew, {0, 1}, δnew, qnew, Fnew), so that
L(Nnew) = EXTEND(L(N)).
A complete solution will include precise definitions for Qnew, δnew, qnew, and Fnew, as
well as a a brief justification of your construction by explaining why these definitions
work, referring specifically to the definition of EXTEND and to acceptance of NFA.

3A result that is proved in order to work towards a larger theorem is called a Lemma.

Copyright Mia Minnes, 2024, Version December 30, 2024 (5)



4. Multiple representations (8 points): For any language L ⊆ Σ∗, recall that we define its
complement as

L := Σ∗ − L = {w ∈ Σ∗ | w /∈ L}

That is, the complement of L contains all and only those strings which are not in L. Our notation
for regular expressions does not include the complement symbol. However, it turns out that the
complement of a language described by a regular expression is guaranteed to also be describable
by a (different) regular expression.4

For example, over the alphabet Σ = {a, b}, the complement of the language described by the
regular expression Σ∗b is described by the regular expression ε ∪ Σ∗a because any string that
does not end in b must either be the empty string or end in a.

For each of the regular expressions R over the alphabet Σ = {a, b} below, write the regular
expression for L(R). Your regular expressions may use the symbols ∅, ε, a, b, and the following
operations to combine them: union, concatenation, and Kleene star.

Briefly justify why your solution for each part works by giving plain English descriptions of the
language described by the regular expression and of its complement and connecting them to the
regular expression via relevant definitions. An English description that is more detailed than
simply negating the description in the original language will likely be helpful in the justification.

Alternatively, you can justify your solution by first designing a DFA that recognizes L(R), using
the construction from class and the book to modify this DFA to get a new DFA that recog-
nizes L(R), and then applying the constructions from class and the book to convert this new
DFA to a regular expression.

For each part of the question, clearly state which approach you’re taking and include enough
intermediate steps to illustrate your work.

(a) (Graded for correctness) (a ∪ b)∗a(a ∪ b)∗

(b) (Graded for correctness) (a ∪ b)(a ∪ b)(a ∪ b)

4We’ll see that this is connected to the result we proved in class that the complement of each language
recognizable by a DFA is recognizable by a(nother) DFA.

Copyright Mia Minnes, 2024, Version December 30, 2024 (6)


