
HW1CSE105F24: Homework assignment 1

CSE105F24

Due: October 8th at 5pm, via Gradescope

In this assignment,

You will practice reading and applying the definitions of alphabets, strings, languages, Kleene
star, and regular expressions. You will use regular expressions and relate them to languages
and finite automata. You will use precise notation to formally define the state diagram of finite
automata, and you will use clear English to describe computations of finite automata informally.

Resources: To review the topics for this assignment, see the class material from Weeks 0 and
1. We will post frequently asked questions and our answers to them in a pinned Piazza post.

Reading and extra practice problems: Sipser Section 0, 1.3, 1.1. Chapter 1 exercises 1.1,
1.2, 1.3, 1.18, 1.23.

For all HW assignments: Weekly homework may be done individually or in groups of up
to 3 students. You may switch HW partners for different HW assignments. Please ensure
your name(s) and PID(s) are clearly visible on the first page of your homework submission and
then upload the PDF to Gradescope. If working in a group, submit only one submission per
group: one partner uploads the submission through their Gradescope account and then adds the
other group member(s) to the Gradescope submission by selecting their name(s) in the “Add
Group Members” dialog box. You will need to re-add your group member(s) every time you
resubmit a new version of your assignment. Each homework question will be graded either for
correctness (including clear and precise explanations and justifications of all answers) or fair
effort completeness. For “graded for correctness” questions: collaboration is allowed only with
CSE 105 students in your group; if your group has questions about a problem, you may ask in
drop-in help hours or post a private post (visible only to the Instructors) on Piazza. For “graded
for completeness” questions: collaboration is allowed with any CSE 105 students this quarter; if
your group has questions about a problem, you may ask in drop-in help hours or post a public
post on Piazza.

All submitted homework for this class must be typed. You can use a word processing editor if
you like (Microsoft Word, Open Office, Notepad, Vim, Google Docs, etc.) but you might find
it useful to take this opportunity to learn LaTeX. LaTeX is a markup language used widely in

Copyright Mia Minnes, 2024, Version December 30, 2024 (1)

computer science and mathematics. The homework assignments are typed using LaTeX and you
can use the source files as templates for typesetting your solutions. To generate state diagrams of
machines,you can (1) use the LaTex tikzpicture environment (see templates in the class notes),
or (2)) use the software tools Flap.js or JFLAP described in the class syllabus (and include a
screenshot in your PDF), or (3) you can carefully and clearly hand-draw the diagram and take a
picture and include it in your PDF. We recommend that you submit early drafts to Gradescope
so that in case of any technical difficulties, at least some of your work is present. You may update
your submission as many times as you’d like up to the deadline.

Integrity reminders

• Problems should be solved together, not divided up between the partners. The homework
is designed to give you practice with the main concepts and techniques of the course, while
getting to know and learn from your classmates.

• You may not collaborate on homework questions graded for correctness with anyone other
than your group members. You may ask questions about the homework in office hours (of
the instructor, TAs, and/or tutors) and on Piazza (as private notes viewable only to the
Instructors). You cannot use any online resources about the course content other than the
class material from this quarter – this is primarily to ensure that we all use consistent nota-
tion and definitions (aligned with the textbook) and also to protect the learning experience
you will have when the ‘aha’ moments of solving the problem authentically happen.

• Do not share written solutions or partial solutions for homework with other students in
the class who are not in your group. Doing so would dilute their learning experience and
detract from their success in the class.

You will submit this assignment via Gradescope (https://www.gradescope.com) in the assign-
ment called “hw1CSE105F24”.

Assigned questions

1. Finding examples and edge cases (12 points):

With Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and Γ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,B,C,D,E, F}

(a) (Graded for completeness) 1 Give an example of a string over Σ that is meaningful to you in
some way and whose length is between 5 and 20, and explain why this string is meaningful
to you.

1This means you will get full credit so long as your submission demonstrates honest effort to answer the
question. You will not be penalized for incorrect answers. To demonstrate your honest effort in answering the
question, we expect you to include your attempt to answer *each* part of the question. If you get stuck with
your attempt, you can still demonstrate your effort by explaining where you got stuck and what you did to try
to get unstuck.

Copyright Mia Minnes, 2024, Version December 30, 2024 (2)

https://www.gradescope.com

(b) (Graded for completeness) Calculate the number of distinct strings of length 3 over Σ and
then explain your calculation.

(c) (Graded for completeness) With the ordering 0 < 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 <
9 < A < B < C < D < E < F , list the first 50 strings over Γ in string order. Explain
how you constructed this list. Note: you can write a program to generate this list if you’d
like, and you may use any external tools to help you write this program. If you do use a
program to generate the list, include it (and documentation for how it works) as part of your
submission.

(d) (Graded for correctness) 2 Give an example of a finite set that is a language over Σ and over
Γ, or explain why there is no such set. A complete and correct answer will use clear and
precise notation (consistent with the textbook and class notes) and will include a description
of why the given example is a language over Σ and over Γ and is finite, or an explanation
why there is no such example.

(e) (Graded for correctness) Give an example of an infinite set that is a language over Σ and
not over Γ, or explain why there is no such set. A complete and correct answer will use
clear and precise notation (consistent with the textbook and class notes) and will include
a description of why the given example is a language over Σ and not over Γ and is infinite,
or an explanation why there is no such example.

2. Regular expressions (10 points):

(a) (Graded for completeness) Give three regular expressions that all describe the set of all
strings over {a, b} that have odd length. Ungraded bonus challenge: Make the expressions
as different as possible!

(b) (Graded for completeness) A friend tells you that each regular expression that has a Kleene
star (∗) describes an infinite language. Are they right? Either help them justify their claim
or give a counterexample to disprove it and explain your counterexample.

3. Functions over languages (15 points):

For each language L over the alphabet Σ1 = {0, 1}, we have the associated sets of strings

SUBSTRING(L) = {w ∈ Σ∗
1 | there exist x, y ∈ Σ∗

1 such that xwy ∈ L}

and
EXTEND(L) = {w ∈ Σ∗

1 | w = uv for some strings u ∈ L and v ∈ Σ∗
1}

(a) (Graded for completeness) Specify an example languageA over Σ1 such that SUBSTRING(A) =
EXTEND(A), or explain why there is no such example. A complete solution will include

2This means your solution will be evaluated not only on the correctness of your answers, but on your ability
to present your ideas clearly and logically. You should explain how you arrived at your conclusions, using
mathematically sound reasoning. Whether you use formal proof techniques or write a more informal argument
for why something is true, your answers should always be well-supported. Your goal should be to convince the
reader that your results and methods are sound.

Copyright Mia Minnes, 2024, Version December 30, 2024 (3)

either (1) a precise and clear description of your example language A and a precise and clear
description of the result of computing SUBSTRING(A), EXTEND(A) (using the given
definitions) to justify this description and to justify the set equality, or (2) a sufficiently
general and correct argument why there is no such example, referring back to the relevant
definitions.

(b) (Graded for correctness) Specify an example language B over Σ1 such that

SUBSTRING(B) = {ε}

and
EXTEND(B) = Σ∗

1

or explain why there is no such example. A complete solution will include either (1) a
precise and clear description of your example language B and a precise and clear description
of the result of computing SUBSTRING(B), EXTEND(B) (using the given definitions)
to justify this description and to justify the set equality with {ε} and Σ∗

1 (respectively), or
(2) a sufficiently general and correct argument why there is no such example, referring back
to the relevant definitions.

(c) (Graded for correctness) Specify an example infinite language C over Σ1 such that

SUBSTRING(C) ̸= Σ∗
1

and
EXTEND(C) ̸= Σ∗

1

, or explain why there is no such example. A complete solution will include either (1) a
precise and clear description of your example language C and a precise and clear description
of the result of computing SUBSTRING(B), EXTEND(B) (using the given definitions)
to justify this description and to justify the set nonequality claims, or (2) a sufficiently
general and correct argument why there is no such example, referring back to the relevant
definitions.

4. Finite automata (13 points):

Consider the finite automaton (Q,Σ, δ, q0, F) whose state diagram is depicted below

q0start q1 q2

0

1
0

1

0, 1

where Q = {q0, q1, q2}, Σ = {0, 1}, and F = {q0}, and δ : Q×Σ → Q is specified by the look-up
table

Copyright Mia Minnes, 2024, Version December 30, 2024 (4)

0 1
q0 q0 q1
q1 q2 q0
q2 q2 q2

(a) (Graded for completeness) A friend tries to summarize the transition function with the
formula

δ(qi, x) =

q0 when i = 0 and x = 0

q2 when x < i

qj when j = (i+ 1) mod 2 and x = 1

for x ∈ {0, 1} and i ∈ {0, 1, 2}. Are they right? Either help them justify their claim or give
a counterexample to disprove it and then fix their formula.

(b) (Graded for correctness) Give a regular expression R so that L(R) is the language recognized
by this finite automaton. Justify your answer by referring to the definition of the semantics
of regular expressions and computations of finite automata. Include an explanation for why
each string in L(R) is accepted by the finite automaton and for why each string not in L(R)
is rejected by the finite automaton.

(c) (Graded for correctness) Keeping the same set of statesQ = {q0, q1, q2}, alphabet Σ = {0, 1},
same start state q0, and same transition function δ, choose a new set of accepting states Fnew

so that the new finite automaton that results accepts at least one string that the original
one rejected and rejects at least one string that the original one accepted, or explain why
there is no such choice of Fnew. A complete solution will include either (1) a precise and
clear description of your choice of Fnew and a precise and clear the two example strings
using relevant definitions to justify them, or (2) a sufficiently general and correct argument
why there is no such example, referring back to the relevant definitions.

Copyright Mia Minnes, 2024, Version December 30, 2024 (5)

HW2CSE105F24: Homework assignment 2 Due: October 15th at 5pm, via Gradescope

In this assignment,

You will practice designing multiple representations of regular languages and working with gen-
eral constructions of automata to demonstrate the richness of the class of regular languages.

Resources: To review the topics for this assignment, see the class material from Week 2. We
will post frequently asked questions and our answers to them in a pinned Piazza post.

Reading and extra practice problems: Sipser Section 1.1, 1.2, 1.3. Chapter 1 exercises 1.4,
1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11, 1.12, 1.14, 1.15, 1.16, 1.17, 1.19, 1.20, 1.21, 1.22. Chapter 1
problem 1.51.

For all HW assignments: Weekly homework may be done individually or in groups of up
to 3 students. You may switch HW partners for different HW assignments. Please ensure
your name(s) and PID(s) are clearly visible on the first page of your homework submission and
then upload the PDF to Gradescope. If working in a group, submit only one submission per
group: one partner uploads the submission through their Gradescope account and then adds the
other group member(s) to the Gradescope submission by selecting their name(s) in the “Add
Group Members” dialog box. You will need to re-add your group member(s) every time you
resubmit a new version of your assignment. Each homework question will be graded either for
correctness (including clear and precise explanations and justifications of all answers) or fair
effort completeness. For “graded for correctness” questions: collaboration is allowed only with
CSE 105 students in your group; if your group has questions about a problem, you may ask in
drop-in help hours or post a private post (visible only to the Instructors) on Piazza. For “graded
for completeness” questions: collaboration is allowed with any CSE 105 students this quarter; if
your group has questions about a problem, you may ask in drop-in help hours or post a public
post on Piazza.

All submitted homework for this class must be typed. You can use a word processing editor if
you like (Microsoft Word, Open Office, Notepad, Vim, Google Docs, etc.) but you might find
it useful to take this opportunity to learn LaTeX. LaTeX is a markup language used widely in
computer science and mathematics. The homework assignments are typed using LaTeX and you
can use the source files as templates for typesetting your solutions. To generate state diagrams of
machines,you can (1) use the LaTex tikzpicture environment (see templates in the class notes),
or (2)) use the software tools Flap.js or JFLAP described in the class syllabus (and include a
screenshot in your PDF), or (3) you can carefully and clearly hand-draw the diagram and take a
picture and include it in your PDF. We recommend that you submit early drafts to Gradescope
so that in case of any technical difficulties, at least some of your work is present. You may update
your submission as many times as you’d like up to the deadline.

Integrity reminders

• Problems should be solved together, not divided up between the partners. The homework

Copyright Mia Minnes, 2024, Version December 30, 2024 (6)

is designed to give you practice with the main concepts and techniques of the course, while
getting to know and learn from your classmates.

• You may not collaborate on homework questions graded for correctness with anyone other
than your group members. You may ask questions about the homework in office hours (of
the instructor, TAs, and/or tutors) and on Piazza (as private notes viewable only to the
Instructors). You cannot use any online resources about the course content other than the
class material from this quarter – this is primarily to ensure that we all use consistent nota-
tion and definitions (aligned with the textbook) and also to protect the learning experience
you will have when the ‘aha’ moments of solving the problem authentically happen.

• Do not share written solutions or partial solutions for homework with other students in
the class who are not in your group. Doing so would dilute their learning experience and
detract from their success in the class.

You will submit this assignment via Gradescope (https://www.gradescope.com) in the assign-
ment called “hw2CSE105F24”.

Assigned questions

1. Automata design (12 points): As background to this question, recall that integers can be
represented using base b expansions, for any convenient choice of base b. The precise definition
is: for b an integer greater than 1 and n a positive integer, the base b expansion of n is defined
to be

(ak−1 · · · a1a0)b
where k is a positive integer, a0, a1, . . . , ak−1 are nonnegative integers less than b, ak−1 ̸= 0, and

n =
k−1∑
i=0

aib
i

Notice: The base b expansion of a positive integer n is a string over the alphabet {x ∈ Z | 0 ≤
x < b} whose leftmost character is nonzero.

An important property of base b expansions of integers is that, for each integer b greater than 1,
each positive integer n = (ak−1 · · · a1a0)b, and each nonnegative integer a less than b,

bn+ a = (ak−1 · · · a1a0a)b

In other words, shifting the base b expansion to the left results in multiplying the integer value
by the base. In this question we’ll explore building deterministic finite automata that recognize
languages that correspond to useful sets of integers.

Copyright Mia Minnes, 2024, Version December 30, 2024 (7)

https://www.gradescope.com

(a) (Graded for completeness) 3 Design a DFA that recognizes the set of binary (base 2) ex-
pansions of positive integers that are powers of 2. A complete solution will include the
state diagram of your DFA and a brief justification of your construction by explaining the
role each state plays in the machine, as well as a brief justification about how the strings
accepted and rejected by the machine connect to the specified language.

Hints: (1) A power of 2 is an integer x that can be written as 2y for some nonnegative
integer y, (2) the DFA should accept the strings 100, 10 and 100000 and should reject the
strings 010, 1101, and ε (can you see why?).

(b) (Graded for completeness) Consider arbitrary positive integer m. Design a DFA that rec-
ognizes the set of binary (base 2) expansions of positive integers that are multiples of m.
A complete solution will include the formal definition of your DFA (paramterized by m)
and a brief justification of your construction by explaining the role each state plays in the
machine, as well as a brief justification about how the strings accepted and rejected by the
machine connect to the specified language.

Hints: (1) Consider having a state for each possible remainder upon division by m. (2) To
determine transitions, notice that reading a new character will shift what we already read
over by one slot.

(c) (Graded for correctness) 4 Choose a positive integer m0 between 5 and 8 (inclusive) and
draw the state diagram of a DFA recognizing the following language over {0, 1, 2, 3}

{w ∈ {0, 1, 2, 3}∗ | w is a base 4 expansion of a positive integer that is a multiple of m0}

A complete solution will include the state diagram of your DFA and a brief justification of
your construction by explaining the role each state plays in the machine, as well as a brief
justification about how the strings accepted and rejected by the machine connect to the
specified language.

Bonus extension to think about (ungraded): Which other languages related to sets of integers can
be proved to be regular using a similar strategy?

2. Nondeterminism (15 points): For this question, the alphabet is {a, b}.

(a) (Graded for completeness) Design a DFA that recognizes the language

{w ∈ {a, b}∗ | w contains at most one a and at least two bs}
3This means you will get full credit so long as your submission demonstrates honest effort to answer the

question. You will not be penalized for incorrect answers. To demonstrate your honest effort in answering the
question, we expect you to include your attempt to answer *each* part of the question. If you get stuck with
your attempt, you can still demonstrate your effort by explaining where you got stuck and what you did to try
to get unstuck.

4This means your solution will be evaluated not only on the correctness of your answers, but on your ability
to present your ideas clearly and logically. You should explain how you arrived at your conclusions, using
mathematically sound reasoning. Whether you use formal proof techniques or write a more informal argument
for why something is true, your answers should always be well-supported. Your goal should be to convince the
reader that your results and methods are sound.

Copyright Mia Minnes, 2024, Version December 30, 2024 (8)

You can design this DFA directly or use the constructions from class (and the footnote to
Theorem 1.25 in the book) to build this DFA from DFA for the simpler languages that are
intersected to give this language.

A complete solution will include the state diagram of your DFA and a brief justification of
your construction either by explaining the role each state plays in the machine, as well as
a brief justification about how the strings accepted and rejected by the machine connect to
the specified language, or by justifying the design of the DFA for the simpler languages and
then describing how the Theorem was used.

(b) (Graded for correctness) Design a NFA with at most 6 states that recognizes the language

{w ∈ {a, b}∗ | w contains at most one a and at least two bs}

A complete solution will include the state diagram of your NFA and a brief justification of
your construction by explaining the role each state plays in the machine, as well as a brief
justification about how the strings accepted and rejected by the machine connect to the
specified language. Give one example string in the language and explain the computation
of the NFA that witnesses that the machine accepts this string. Also, give one example
string not in the language and explain why the NFA rejects this string.

(c) (Graded for correctness) Design a NFA with at most 6 states that recognizes the language

{w ∈ {a, b}∗ | w contains at most one a or at least two bs}

A complete solution will include the state diagram of your NFA and a brief justification of
your construction by explaining the role each state plays in the machine, as well as a brief
justification about how the strings accepted and rejected by the machine connect to the
specified language. Give one example string in the language and explain the computation
of the NFA that witnesses that the machine accepts this string. Also, give one example
string not in the language and explain why the NFA rejects this string.

Bonus extension to think about (ungraded): Did you need all 6 states? Could you design DFA
with 6 states that recognize each of these langauges?

3. General constructions (15 points): In this question, you’ll practice working with formal
general constructions for NFAs and translating between state diagrams and formal definitions.

(a) (Graded for correctness) Consider the following general construction: LetN1 = (Q,Σ, δ1, q1, F1)
be a NFA and assume that q0 /∈ Q. Define the new NFA N2 = (Q ∪ {q0},Σ, δ2, q0, {q1})
where

δ2 : (Q ∪ {q0})× Σε → P(Q ∪ {q0})
is defined by

δ2(q, a) =

{q′ ∈ Q | q ∈ δ1(q

′, a)} if q ∈ Q, a ∈ Σε

F1 if q = q0, a = ε

∅ if q = q0, a ∈ Σ

Illustrate this construction by defining a specific example NFA N1 and applying the con-
struction above to create the new NFA N2. Your example NFA should

Copyright Mia Minnes, 2024, Version December 30, 2024 (9)

• Have exactly four states (all reachable from the start state),

• Accept at least one string and reject at least one string, and

• Not have any states labelled q0.

Apply the construction above to create the new NFA. A complete submission will include
the state diagram of your example NFA N1 and the state diagram of the NFA N2 resulting
from this construction and a precise and clear description of L(N1) and L(N2), justified by
explaining the role each state plays in the machine, as well as a brief justification about
how the strings accepted and rejected by the machine connect to the language.

(b) In Week 2’s review quiz, we saw the definition that a set X is said to be closed under an
operation if, for any elements in X, applying to them gives an element in X. For example,
the set of integers is closed under multiplication because if we take any two integers, their
product is also an integer .

Recall the definitions we have: For each language L over the alphabet Σ1 = {0, 1}, we have
the associated set of strings

EXTEND(L) = {w ∈ Σ∗
1 | w = uv for some strings u ∈ L and v ∈ Σ∗

1}

We will prove that the collection of languages over {0, 1} that are each recognizable by some
NFA is closed under the EXTEND operation.

i. (Graded for completeness) As a helpful tool in our construction5, prove that every NFA
can be converted to an equivalent one that has a single accept state. Note: this is
exercise 1.11 in the textbook.

ii. (Graded for correctness) Prove that the collection of languages over {0, 1} that are
each recognizable by some NFA is closed under the EXTEND operation. You can
assume that you are given a NFA with a single accept state N = (Q, {0, 1}, δ, q0, {qacc})
and you need to define a new NFA, Nnew = (Qnew, {0, 1}, δnew, qnew, Fnew), so that
L(Nnew) = EXTEND(L(N)).
A complete solution will include precise definitions for Qnew, δnew, qnew, and Fnew, as
well as a a brief justification of your construction by explaining why these definitions
work, referring specifically to the definition of EXTEND and to acceptance of NFA.

4. Multiple representations (8 points): For any language L ⊆ Σ∗, recall that we define its
complement as

L := Σ∗ − L = {w ∈ Σ∗ | w /∈ L}

That is, the complement of L contains all and only those strings which are not in L. Our notation
for regular expressions does not include the complement symbol. However, it turns out that the
complement of a language described by a regular expression is guaranteed to also be describable
by a (different) regular expression.6

5A result that is proved in order to work towards a larger theorem is called a Lemma.
6We’ll see that this is connected to the result we proved in class that the complement of each language

recognizable by a DFA is recognizable by a(nother) DFA.

Copyright Mia Minnes, 2024, Version December 30, 2024 (10)

For example, over the alphabet Σ = {a, b}, the complement of the language described by the
regular expression Σ∗b is described by the regular expression ε ∪ Σ∗a because any string that
does not end in b must either be the empty string or end in a.

For each of the regular expressions R over the alphabet Σ = {a, b} below, write the regular
expression for L(R). Your regular expressions may use the symbols ∅, ε, a, b, and the following
operations to combine them: union, concatenation, and Kleene star.

Briefly justify why your solution for each part works by giving plain English descriptions of the
language described by the regular expression and of its complement and connecting them to the
regular expression via relevant definitions. An English description that is more detailed than
simply negating the description in the original language will likely be helpful in the justification.

Alternatively, you can justify your solution by first designing a DFA that recognizes L(R), using
the construction from class and the book to modify this DFA to get a new DFA that recog-
nizes L(R), and then applying the constructions from class and the book to convert this new
DFA to a regular expression.

For each part of the question, clearly state which approach you’re taking and include enough
intermediate steps to illustrate your work.

(a) (Graded for correctness) (a ∪ b)∗a(a ∪ b)∗

(b) (Graded for correctness) (a ∪ b)(a ∪ b)(a ∪ b)

Copyright Mia Minnes, 2024, Version December 30, 2024 (11)

HW3CSE105F24: Homework assignment 3 Due: October 22nd at 5pm, via Gradescope

In this assignment,

You will demonstrate the richness of the class of regular languages, as well as its boundaries.

Resources: To review the topics for this assignment, see the class material from Week 3. We
will post frequently asked questions and our answers to them in a pinned Piazza post.

Reading and extra practice problems: Sipser Chapter 1. Chapter 1 exercises 1.4, 1.5, 1.6,
1.7, 1.8, 1.9, 1.10, 1.11, 1.12, 1.14, 1.15, 1.16, 1.17, 1.19, 1.20, 1.21, 1.22. Chapter 1 problem
1.51.

For all HW assignments: Weekly homework may be done individually or in groups of up
to 3 students. You may switch HW partners for different HW assignments. Please ensure
your name(s) and PID(s) are clearly visible on the first page of your homework submission and
then upload the PDF to Gradescope. If working in a group, submit only one submission per
group: one partner uploads the submission through their Gradescope account and then adds the
other group member(s) to the Gradescope submission by selecting their name(s) in the “Add
Group Members” dialog box. You will need to re-add your group member(s) every time you
resubmit a new version of your assignment. Each homework question will be graded either for
correctness (including clear and precise explanations and justifications of all answers) or fair
effort completeness. For “graded for correctness” questions: collaboration is allowed only with
CSE 105 students in your group; if your group has questions about a problem, you may ask in
drop-in help hours or post a private post (visible only to the Instructors) on Piazza. For “graded
for completeness” questions: collaboration is allowed with any CSE 105 students this quarter; if
your group has questions about a problem, you may ask in drop-in help hours or post a public
post on Piazza.

All submitted homework for this class must be typed. You can use a word processing editor if
you like (Microsoft Word, Open Office, Notepad, Vim, Google Docs, etc.) but you might find
it useful to take this opportunity to learn LaTeX. LaTeX is a markup language used widely in
computer science and mathematics. The homework assignments are typed using LaTeX and you
can use the source files as templates for typesetting your solutions. To generate state diagrams of
machines,you can (1) use the LaTex tikzpicture environment (see templates in the class notes),
or (2)) use the software tools Flap.js or JFLAP described in the class syllabus (and include a
screenshot in your PDF), or (3) you can carefully and clearly hand-draw the diagram and take a
picture and include it in your PDF. We recommend that you submit early drafts to Gradescope
so that in case of any technical difficulties, at least some of your work is present. You may update
your submission as many times as you’d like up to the deadline.

Integrity reminders

• Problems should be solved together, not divided up between the partners. The homework
is designed to give you practice with the main concepts and techniques of the course, while

Copyright Mia Minnes, 2024, Version December 30, 2024 (12)

getting to know and learn from your classmates.

• You may not collaborate on homework questions graded for correctness with anyone other
than your group members. You may ask questions about the homework in office hours (of
the instructor, TAs, and/or tutors) and on Piazza (as private notes viewable only to the
Instructors). You cannot use any online resources about the course content other than the
class material from this quarter – this is primarily to ensure that we all use consistent nota-
tion and definitions (aligned with the textbook) and also to protect the learning experience
you will have when the ‘aha’ moments of solving the problem authentically happen.

• Do not share written solutions or partial solutions for homework with other students in
the class who are not in your group. Doing so would dilute their learning experience and
detract from their success in the class.

You will submit this assignment via Gradescope (https://www.gradescope.com) in the assign-
ment called “hw3CSE105F24”.

Assigned questions

1. Using general constructions (16 points): Consider the NFA N over {0, 1, 2} with state
diagram

q0start q1

q2 q3

q4 q5 q6

0, 1, 2

0

1

ε

1

ε

ε

0, 1, 2

2

(a) (Graded for completeness) 7 Give two examples of strings of length greater than 2 that are
accepted by N and two examples of strings of length greater than 2 that are rejected by N .
For each example string, list at least one of the computations of N on this string and label
whether this computation witnesses that the string is accepted by N .

(b) (Graded for correctness) 8 Use the “macro-state” construction from Theorem 1.39 and class
to create the DFA M recognizing the same language as N . You only need to include states

7This means you will get full credit so long as your submission demonstrates honest effort to answer the
question. You will not be penalized for incorrect answers. To demonstrate your honest effort in answering the
question, we expect you to include your attempt to answer *each* part of the question. If you get stuck with
your attempt, you can still demonstrate your effort by explaining where you got stuck and what you did to try
to get unstuck.

8This means your solution will be evaluated not only on the correctness of your answers, but on your ability
to present your ideas clearly and logically. You should explain how you arrived at your conclusions, using
mathematically sound reasoning. Whether you use formal proof techniques or write a more informal argument
for why something is true, your answers should always be well-supported. Your goal should be to convince the
reader that your results and methods are sound.

Copyright Mia Minnes, 2024, Version December 30, 2024 (13)

https://www.gradescope.com

that are reachable from the start state. For full credit, submit (1) a state diagram that is
deterministic (there should be arrows labelled 0, 1, and 2 coming out of each state) and
where each state is labelled by a subset of the states in N ; and (2) for one of your example
strings that is accepted by N , give the computation of M on this string as a seqeuence
of states visited; and (3) for one of your example strings that is rejected by N , give the
computation of M on this string as a seqeuence of states visited.

(c) (Graded for completeness) Give a mathematical description either using set builder notation
or a regular expression for L(N) and for L(M).

2. Multiple representations (12 points):

(a) Consider the languageA1 = {uw | u and w are strings over {0, 1} and have the same length}
and the following argument.

“Proof” that A1 is not regular using the Pumping Lemma: Let p be an arbitrary
positive integer. We will show that p is not a pumping length for A1.
Choose s to be the string 1p0p, which is in A1 because we can choose u = 1p and
w = 0p which each have length p. Since s is in A1 and has length greater than or
equal to p, if p were to be a pumping length for A1, s ought to be pump’able. That
is, there should be a way of dividing s into parts x, y, z where s = xyz, |y| > 0,
|xy| ≤ p, and for each i ≥ 0, xyiz ∈ A1. Suppose x, y, z are such that s = xyz,
|y| > 0 and |xy| ≤ p. Since the first p letters of s are all 1 and |xy| ≤ p, we know
that x and y are made up of all 1s. If we let i = 2, we get a string xyiz that is
not in A1 because repeating y twice adds 1s to u but not to w, and strings in A1

are required to have u and w be the same length. Thus, s is not pumpable (even
though it should have been if p were to be a pumping length) and so p is not a
pumping length for A1. Since p was arbitrary, we have demonstrated that A1 has
no pumping length. By the Pumping Lemma, this implies that A1 is nonregular.

i. (Graded for completeness) Find the (first and/or most significant) logical error in the
“proof” above and describe why it’s wrong.

ii. (Graded for completeness) Prove that the set A1 is actually regular (by finding a regular
expression that describes it or a DFA/NFA that recognizes it, and justifying why) or
fix the proof so that it is logically sound.

(b) Consider the languageA2 = {u1w | u and w are strings over {0, 1} and have the same length}
and the following argument.

“Proof” that A2 is not regular using the Pumping Lemma: Let p be an arbitrary
positive integer. We will show that p is not a pumping length for A2.
Choose s to be the string 1p+10p, which is in A2 because we can choose u = 1p and
w = 0p which each have length p. Since s is in A2 and has length greater than or
equal to p, if p were to be a pumping length for A2, s ought to be pump’able. That
is, there should be a way of dividing s into parts x, y, z where s = xyz, |y| > 0,
|xy| ≤ p, and for each i ≥ 0, xyiz ∈ A2. When x = ε and y = 1p+1 and z = 0p, we
have satisfied that s = xyz, |y| > 0 (because p is positive) and |xy| ≤ p. If we let

Copyright Mia Minnes, 2024, Version December 30, 2024 (14)

i = 0, we get the string xyiz = 0p that is not in A2 because its middle symbol is
a 0, not a 1. Thus, s is not pumpable (even though it should have been if p were
to be a pumping length) and so p is not a pumping length for A2. Since p was
arbitrary, we have demonstrated that A2 has no pumping length. By the Pumping
Lemma, this implies that A2 is nonregular.

i. (Graded for completeness) Find the (first and/or most significant) logical error in the
“proof” above and describe why it’s wrong.

ii. (Graded for completeness) Prove that the set A2 is actually regular (by finding a regular
expression that describes it or a DFA/NFA that recognizes it, and justifying why) or
fix the proof so that it is logically sound.

3. Pumping (10 points):

(a) (Graded for correctness) Give an example of a language over the alphabet {a, b} that has
cardinality 5 and for which 4 is a pumping length and 3 is not a pumping length. Is this
language regular? A complete solution will give (1) a clear and precise description of the
language, (2) a justification for why 4 is a pumping length, (3) a justification for why 3 is
not a pumping length, (4) a correct and justified answer to whether the language is regular.

(b) (Graded for completeness) In class and in the reading so far, we’ve seen the following ex-
amples of nonregular sets:

{0n1n | n ≥ 0}

{0n1n | n ≥ 2}

{0n1m | 0 ≤ n ≤ m}

{0n1m | 0 ≤ m ≤ n}

{0i12i | 0 ≤ i}

{0i1i+1 | 0 ≤ i}

{0n1m0n | n,m ≥ 0}

{w ∈ {0, 1}∗ | w = wR}

{wwR | w ∈ {0, 1}∗}

Modify one of these sets in some way and use the Pumping Lemma to prove that the
resulting set is still nonregular.

4. Regular and nonregular languages (12 points): In Week 2’s review quiz, we saw the defi-
nition that a set X is said to be closed under an operation if, for any elements in X, applying
to them gives an element in X. For example, the set of integers is closed under multiplication
because if we take any two integers, their product is also an integer .

Prove or disprove each closure claim statement below about the class of regular languages and
the class of nonregular languages. Your arguments may refer to theorems proved in the textbook
and class, and if they do, should include specific page numbers and references (i.e. write out the
claim that was proved in the book and/or class).

Recall the definitions we have:

For language L over the alphabet Σ1 = {0, 1}, we have the associated sets of strings

SUBSTRING(L) = {w ∈ Σ∗
1 | there exist a, b ∈ Σ∗

1 such that awb ∈ L}

and
EXTEND(L) = {w ∈ Σ∗

1 | w = uv for some strings u ∈ L and v ∈ Σ∗
1}

Copyright Mia Minnes, 2024, Version December 30, 2024 (15)

(a) (Graded for completeness) The set of regular languages over {0, 1} is closed under the
SUBSTRING operation.

(b) (Graded for completeness) The set of nonregular languages over {0, 1} is closed under the
SUBSTRING operation.

(c) (Graded for correctness) The set of regular languages over {0, 1} is closed under theEXTEND
operation.

(d) (Graded for correctness) The set of nonregular languages over {0, 1} is closed under the
EXTEND operation.

Copyright Mia Minnes, 2024, Version December 30, 2024 (16)

HW4CSE105F24: Homework assignment 4 Due: November 12, 2024 at 5pm, via Gradescope

In this assignment,

You will work with context-free languages and their representations. You will also practice
analyzing, designing, and working with Turing machines. You will use general constructions and
specific machines to explore the classes of recognizable and decidable languages.

Resources: To review the topics for this assignment, see the class material from Weeks 4, 5,
and 6. We will post frequently asked questions and our answers to them in a pinned Piazza post.

Reading and extra practice problems: Sipser Chapters 2 and 3. Chapter 2 exercises 2.1,
2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.9, 2.10, 2.11, 2.12, 2.13, 2.16, 2.17. Chapter 3 exercises 3.1, 3.2, 3.5,
3.8.

For all HW assignments: Weekly homework may be done individually or in groups of up
to 3 students. You may switch HW partners for different HW assignments. Please ensure
your name(s) and PID(s) are clearly visible on the first page of your homework submission and
then upload the PDF to Gradescope. If working in a group, submit only one submission per
group: one partner uploads the submission through their Gradescope account and then adds the
other group member(s) to the Gradescope submission by selecting their name(s) in the “Add
Group Members” dialog box. You will need to re-add your group member(s) every time you
resubmit a new version of your assignment. Each homework question will be graded either for
correctness (including clear and precise explanations and justifications of all answers) or fair
effort completeness. For “graded for correctness” questions: collaboration is allowed only with
CSE 105 students in your group; if your group has questions about a problem, you may ask in
drop-in help hours or post a private post (visible only to the Instructors) on Piazza. For “graded
for completeness” questions: collaboration is allowed with any CSE 105 students this quarter; if
your group has questions about a problem, you may ask in drop-in help hours or post a public
post on Piazza.

All submitted homework for this class must be typed. You can use a word processing editor if
you like (Microsoft Word, Open Office, Notepad, Vim, Google Docs, etc.) but you might find
it useful to take this opportunity to learn LaTeX. LaTeX is a markup language used widely in
computer science and mathematics. The homework assignments are typed using LaTeX and you
can use the source files as templates for typesetting your solutions. To generate state diagrams of
machines,you can (1) use the LaTex tikzpicture environment (see templates in the class notes),
or (2)) use the software tools Flap.js or JFLAP described in the class syllabus (and include a
screenshot in your PDF), or (3) you can carefully and clearly hand-draw the diagram and take a
picture and include it in your PDF. We recommend that you submit early drafts to Gradescope
so that in case of any technical difficulties, at least some of your work is present. You may update
your submission as many times as you’d like up to the deadline.

Integrity reminders

Copyright Mia Minnes, 2024, Version December 30, 2024 (17)

• Problems should be solved together, not divided up between the partners. The homework
is designed to give you practice with the main concepts and techniques of the course, while
getting to know and learn from your classmates.

• You may not collaborate on homework questions graded for correctness with anyone other
than your group members. You may ask questions about the homework in office hours (of
the instructor, TAs, and/or tutors) and on Piazza (as private notes viewable only to the
Instructors). You cannot use any online resources about the course content other than the
class material from this quarter – this is primarily to ensure that we all use consistent nota-
tion and definitions (aligned with the textbook) and also to protect the learning experience
you will have when the ‘aha’ moments of solving the problem authentically happen.

• Do not share written solutions or partial solutions for homework with other students in
the class who are not in your group. Doing so would dilute their learning experience and
detract from their success in the class.

You will submit this assignment via Gradescope (https://www.gradescope.com) in the assign-
ment called “hw4CSE105F24”.

Assigned questions

1. Push-down automata (PDA) and context-free grammars (CFG) (8 points): On page
14 of the week 3 notes, we have the following list of languages over the alphabet {a, b}

{anbn | 0 ≤ n ≤ 5} {bnan | n ≥ 2} {ambn | 0 ≤ m ≤ n}
{ambn | m ≥ n+ 3, n ≥ 0} {bman | m ≥ 1, n ≥ 3}
{w ∈ {a, b}∗ | w = wR} {wwR | w ∈ {a, b}∗}

(a) (Graded for completeness) 9 Pick one of the regular languages and design a regular expression
that describes it. Briefly justify your regular expression by connecting the subexpressions
of it to the intended language and referencing relevant definitions.

(b) (Graded for completeness) Pick another one of the regular languages and design a deter-
ministic finite automaton (DFA) that recognizes it. Draw the state diagram of your DFA.
Briefly justify your design by explaining the role each state plays in the machine, as well as
a brief justification about how the strings accepted and rejected by the machine connect to
the specified language.

(c) (Graded for completeness) Pick one of the nonregular languages and design a PDA that
recognizes it. Draw the state diagram of your PDA. Briefly justify your design by explaining
the role each state plays in the machine, as well as a brief justification about how the strings
accepted and rejected by the machine connect to the specified language.

9This means you will get full credit so long as your submission demonstrates honest effort to answer the
question. You will not be penalized for incorrect answers. To demonstrate your honest effort in answering the
question, we expect you to include your attempt to answer *each* part of the question. If you get stuck with
your attempt, you can still demonstrate your effort by explaining where you got stuck and what you did to try
to get unstuck.

Copyright Mia Minnes, 2024, Version December 30, 2024 (18)

https://www.gradescope.com

(d) (Graded for completeness) Pick one of the nonregular languages and write a CFG that
generates it. Briefly justify your design by demonstrating how derivations in the grammar
relate to the intended language.

2. General constructions for context-free languages (21 points):

In class in weeks 4 and 5, we described several general constructions with PDAs and CFGs, leaving
their details to homework. In this question, we’ll fill in these details. The first constructions help
us prove that the class of regular languages is a subset of the class of context-free languages. The
other construction allows us to make simplifying assumptions about PDAs recognizing languages.

(a) (Graded for correctness) 10 When we first introduced PDAs we observed that any NFA can
be transformed to a PDA by not using the stack of the PDA at all. Suppose a friend gives
you the following construction to formalize this transformation:

Given a NFA N = (Q,Σ, δN , q0, F) we define a PDA M with L(M) = L(N) by
letting M = (Q,Σ,Σ, δ, q0, F) where δ((q, a, b)) = δN((q, a)) for each q ∈ Q,
a ∈ Σε and b ∈ Σε.

For each of the six defining parameters for the PDA, explain whether it’s defined correctly
or not. If it is not defined correctly, explain why not and give a new definition for this
parameter that corrects the mistake.

(b) (Graded for correctness) In the book on page 107, the top paragraph describes a procedure
for converting DFAs to CFGs:

You can convert any DFA into an equivalent CFG as follows. Make a variable Ri

for each state qi of the DFA. Add the rule Ri → aRj to the CFG if δ(qi, a) = qj
is a transition in the DFA. Add the rule Ri → ε if qi is an accept state of the
DFA. Make R0 the start variable ofthe grammar, where q0 is the start state of the
machine. Verify on your own that the resulting CFG generates the same language
that the DFA recognizes.

Use this construction to get a context-free grammar generating the language

{w ∈ {0, 1}∗ | w does not end in 101}

by (1) designing a DFA that recognizes this language and then (2) applying the construction
from the book to convert the DFA to an equivalent CFG. A complete and correct submission
will include the state diagram of the DFA, a brief justification of why it recognizes the
language, and then the complete and precise definition of the CFG that results from applying
the construction from the book to this DFA. Ungraded bonus: take a sample string in the
language and see how the computation of the DFA on this string translates to a derivation
in your grammar.

10This means your solution will be evaluated not only on the correctness of your answers, but on your ability
to present your ideas clearly and logically. You should explain how you arrived at your conclusions, using
mathematically sound reasoning. Whether you use formal proof techniques or write a more informal argument
for why something is true, your answers should always be well-supported. Your goal should be to convince the
reader that your results and methods are sound.

Copyright Mia Minnes, 2024, Version December 30, 2024 (19)

(c) Let M1 = (Q1,Σ,Γ1, δ1, q1, F1) be a PDA and let qnew, rnew, snew be three fresh state labels
(i.e. Q1∩{qnew, rnew, snew} = ∅) and let # be a fresh stack symbol (i.e. # /∈ Γ1). We define
the PDA M2 as

(Q2,Σ,Γ2, δ2, qnew, {snew})

with Q2 = Q1 ∪{qnew, rnew, snew} and Γ2 = Γ1 ∪{#} and δ2 : Q2×Σε×Γ2ε → P(Q2×Γ2ε)
given by

δ2((q, a, b)) =

{(q1,#)} if q = qnew, a = ε, b = ε

δ1((q, a, b)) if q ∈ Q1 \ F1, a ∈ Σε, b ∈ Γ1ε

δ1((q, a, b)) if q ∈ F1, a ∈ Σ, b ∈ Γ1ε

δ1((q, a, b)) if q ∈ F1, a = ε, b ∈ Γ1

δ1((q, a, b)) ∪ {(rnew, ε)} if q ∈ F1, a = ε, b = ε

{(rnew, ε)} if q = rnew, a = ε, b ∈ Γ1

{(snew, ε)} if q = rnew, a = ε, b = #

∅ otherwise

for each q ∈ Q2, a ∈ Σε, and b ∈ Γ2ε.

In this question, we’ll apply this construction for a specific PDA and use this example to
extrapolate the effect of this construction.

i. (Graded for correctness) Consider the PDA M1 with input alphabet {0, 1} and stack
alphabet {0, 1} whose state diagram is

s1start

1, ε; 0

Draw the state diagram for the PDA M2 that results from applying the construction
to M1.

ii. (Graded for completeness) Compare L(M1) and L(M2). Are these sets equal? Does
your answer depend on the specific choice of M1? Why or why not?

iii. (Graded for completeness) Consider the PDA N with input alphabet {0, 1} and stack
alphabet {0, 1} whose state diagram is

q1start q2

0, ε; 0

1, 0; ε

1, 0; ε

Remember that the definition of set-wise concatenation is: for languages L1, L2 over
the alphabet Σ, we have the associated set of strings

L1 ◦ L2 = {w ∈ Σ∗ | w = uv for some strings u ∈ L1 and v ∈ L2}

Copyright Mia Minnes, 2024, Version December 30, 2024 (20)

In class, we discussed how extrapolating the construction that we used to prove that the
class of regular languages is closed under set-wise concategation by drawing spontaneous
transitions from the accepting states in the first machine to the start state of the second
machine doesn’t work. Use the example of M1 and N1 to prove this by showing that

L(M1) ◦ L(N)

is not the language recognized by the machine results from taking the two machines M1

and N , setting the start state of M1 to be the start state of the new machine, setting
the set of accepting states of N to be the set of accepting states of the new machine,
and drawing spontaneous arrows from the accepting states of M1 to the start state of
N .

iv. (Graded for completeness) Describe the language recognized by the machine that results
from taking the two machines M2 and N , setting the start state of M2 to be the
start state of the new machine, setting the set of accepting states of N to be the set
of accepting states of the new machine, and drawing spontaneous arrows from the
accepting states of M2 to the start state of N . Use this description to explain why
we used the construction of M2 from M1 and how this construction could be used in a
proof of the closure of the class of context-free languages under set-wise concatenation.

3. Turing machines (12 points):

Consider the Turing machine T over the input alphabet Σ = {0, 1} with the state diagram below
(the tape alphabet is Γ = {0, 1, X,□}). Convention: we do not include the node for the reject
state qrej and any missing transitions in the state diagram have value (qrej,□, R)

q0start

q1 q2

q3 q4

q5

q6

qacc

0, 1 → R

0, 1 → R

0 → X,R

1 → X,R

□ → L

□ → L

0, 1 → X,L

0, 1 → X,L

0 → X,R

1 → X,R

(a) (Graded for correctness) Specify an example string w1 of length 4 over Σ that is accepted
by this Turing machine, or explain why there is no such example. A complete solution will
include either (1) a precise and clear description of your example string and a precise and
clear description of the accepting computation of the Turing machine on this string or (2)
a sufficiently general and correct argument why there is no such example, referring back to
the relevant definitions.

Copyright Mia Minnes, 2024, Version December 30, 2024 (21)

To describe a computation of a Turing machine, include the contents of the tape, the state
of the machine, and the location of the read/write head at each step in the computation.

Hint: In class we’ve drawn pictures to represent the configuration of the machine at each
step in a computation. You may do so or you may choose to describe these configurations
in words.

(b) (Graded for correctness) Specify an example string w2 of length 3 over Σ that is rejected
by this Turing machine or explain why there is no such example. A complete solution will
include either (1) a precise and clear description of your example string and a precise and
clear description of the rejecting computation of the Turing machine on this string or (2)
a sufficiently general and correct argument why there is no such example, referring back to
the relevant definitions.

(c) (Graded for correctness) Specify an example string w3 of length 2 over Σ on which the
computation of this Turing machine is never halts or explain why there is no such example.
A complete solution will include either (1) a precise and clear description of your example
string and a precise and clear description of the looping (non-halting) computation of the
Turing machine on this string or (2) a sufficiently general and correct argument why there
is no such example, referring back to the relevant definitions.

Note: when a Turing machine does not halt on a given input string, we say that it loops
on that string.

4. Implementation-level descriptions of deciders and recognizers (9 points):

For this question, consider the alphabet Σ = {a, b, c}.

(a) (Graded for correctness) Give an example of an infinite language over Σ (that is not Σ∗)
and give two different Turing machines that recognize it: one that is a decider and one
that is not. A complete solution will include a precise definition for your example language,
along with both a state diagram and an implementation-level description of each Turing
machines, along with a brief explanation of why each of them recognizes the language and
why one is a decider and there other is not.

(b) (Graded for completeness) True or false: There is a Turing machine that is not a decider
that recognizes the empty set. A complete solution will include a witness Turing machine
(given by state diagram or implementation-level description or high-level description) and a
justification for why it’s not a decider and why it does not accept any strings, or a complete
and correct justification for why there is no such Turing machine.

(c) (Graded for completeness) True or false: There is a Turing machine that is not a decider that
recognizes the set of all string Σ∗. A complete solution will include a witness Turing machine
(given by state diagram or implementation-level description or high-level description) and
a justification for why it’s not a decider and why it accept each string over {a, b, c}, or a
complete and correct justification for why there is no such Turing machine.

Copyright Mia Minnes, 2024, Version December 30, 2024 (22)

HW5CSE105F24: Homework assignment 5 Due: November 19, 2024 at 5pm, via Gradescope

In this assignment,

You will practice analyzing, designing, and working with Turing machines. You will use general
constructions and specific machines to explore the classes of recognizable and decidable languages.
You will explore various ways to encode machines as strings so that computational problems can
be recognized.

Resources: To review the topics for this assignment, see the class material from Weeks 6 and
7. We will post frequently asked questions and our answers to them in a pinned Piazza post.

Reading and extra practice problems: Sipser Sections 3.1, 3.3, 4.1 Chapter 3 exercises 3.1,
3.2, 3.5, 3.8. Chapter 4 exercises 4.1, 4.2, 4.3, 4.4, 4.5.

For all HW assignments: Weekly homework may be done individually or in groups of up
to 3 students. You may switch HW partners for different HW assignments. Please ensure
your name(s) and PID(s) are clearly visible on the first page of your homework submission and
then upload the PDF to Gradescope. If working in a group, submit only one submission per
group: one partner uploads the submission through their Gradescope account and then adds the
other group member(s) to the Gradescope submission by selecting their name(s) in the “Add
Group Members” dialog box. You will need to re-add your group member(s) every time you
resubmit a new version of your assignment. Each homework question will be graded either for
correctness (including clear and precise explanations and justifications of all answers) or fair
effort completeness. For “graded for correctness” questions: collaboration is allowed only with
CSE 105 students in your group; if your group has questions about a problem, you may ask in
drop-in help hours or post a private post (visible only to the Instructors) on Piazza. For “graded
for completeness” questions: collaboration is allowed with any CSE 105 students this quarter; if
your group has questions about a problem, you may ask in drop-in help hours or post a public
post on Piazza.

All submitted homework for this class must be typed. You can use a word processing editor if
you like (Microsoft Word, Open Office, Notepad, Vim, Google Docs, etc.) but you might find
it useful to take this opportunity to learn LaTeX. LaTeX is a markup language used widely in
computer science and mathematics. The homework assignments are typed using LaTeX and you
can use the source files as templates for typesetting your solutions. To generate state diagrams of
machines,you can (1) use the LaTex tikzpicture environment (see templates in the class notes),
or (2)) use the software tools Flap.js or JFLAP described in the class syllabus (and include a
screenshot in your PDF), or (3) you can carefully and clearly hand-draw the diagram and take a
picture and include it in your PDF. We recommend that you submit early drafts to Gradescope
so that in case of any technical difficulties, at least some of your work is present. You may update
your submission as many times as you’d like up to the deadline.

Integrity reminders

Copyright Mia Minnes, 2024, Version December 30, 2024 (23)

• Problems should be solved together, not divided up between the partners. The homework
is designed to give you practice with the main concepts and techniques of the course, while
getting to know and learn from your classmates.

• You may not collaborate on homework questions graded for correctness with anyone other
than your group members. You may ask questions about the homework in office hours (of
the instructor, TAs, and/or tutors) and on Piazza (as private notes viewable only to the
Instructors). You cannot use any online resources about the course content other than the
class material from this quarter – this is primarily to ensure that we all use consistent nota-
tion and definitions (aligned with the textbook) and also to protect the learning experience
you will have when the ‘aha’ moments of solving the problem authentically happen.

• Do not share written solutions or partial solutions for homework with other students in
the class who are not in your group. Doing so would dilute their learning experience and
detract from their success in the class.

You will submit this assignment via Gradescope (https://www.gradescope.com) in the assign-
ment called “hw5CSE105F24”.

Assigned questions

1. Classifying languages (10 points): Our first example of a more complicated Turing machine
was of a Turing machine that recognized the language {w#w | w ∈ {0, 1}∗}, which we know is
not context-free. Let’s call that Turing machine M0. The language

L = {ww | w ∈ {0, 1}∗}

is also not context-free.

(a) (Graded for correctness) 11 Choose an example string of length 4 in L that is in not in
{w#w | w ∈ {0, 1}∗} and describe the computation of the Turing machine M0 on your
example string. Include the contents of the tape, the state of the machine, and the location
of the read/write head at each step in the computation.

(b) (Graded for completeness) 12 Explain why the Turing machine from the textbook and class
that recognized {w#w | w ∈ {0, 1}∗} does not recognize {ww | w ∈ {0, 1}∗}. Use your
example to explain why M0 doesn’t recognize L.

11This means your solution will be evaluated not only on the correctness of your answers, but on your ability
to present your ideas clearly and logically. You should explain how you arrived at your conclusions, using
mathematically sound reasoning. Whether you use formal proof techniques or write a more informal argument
for why something is true, your answers should always be well-supported. Your goal should be to convince the
reader that your results and methods are sound.

12This means you will get full credit so long as your submission demonstrates honest effort to answer the
question. You will not be penalized for incorrect answers. To demonstrate your honest effort in answering the
question, we expect you to include your attempt to answer *each* part of the question. If you get stuck with
your attempt, you can still demonstrate your effort by explaining where you got stuck and what you did to try
to get unstuck.

Copyright Mia Minnes, 2024, Version December 30, 2024 (24)

https://www.gradescope.com

(c) (Graded for completeness) Explain how you would change M0 to get a new Turing machine
that does recognize L. Describe this new Turing machine using both an implementation-
level definition and a state diagram of the Turing machine. You may use all our usual
conventions for state diagrams of Turing machines (we do not include the node for the
reject state qrej and any missing transitions in the state diagram have value (qrej,□, R);
b → R label means b → b, R).

2. Closure (18 points): Suppose M is a Turing machine over the alphabet {0, 1}. Let s1, s2, . . .
be a list of all strings in {0, 1}∗ in string (shortlex) order. We define a new Turing machine by
giving its high-level description as follows:

Mnew = “On input w :

1. For n = 1, 2, . . .

2. For j = 1, 2, . . . n

3. For k = 1, 2, . . . , n

4. Run the computation of M on sjwsk

5. If it accepts, accept.

6. If it rejects, go to the next iteration of the loop”

Recall the definitions we have: For each language L over the alphabet Σ1 = {0, 1}, we have the
associated sets of strings

SUBSTRING(L) = {w ∈ Σ∗
1 | there exist x, y ∈ Σ∗

1 such that xwy ∈ L}

and
EXTEND(L) = {w ∈ Σ∗

1 | w = uv for some strings u ∈ L and v ∈ Σ∗
1}

(a) (Graded for correctness) Prove that this Turing machine construction cannot be used to
prove that the class of decidable languages over {0, 1} is closed under the EXTEND
operation. A complete and correct answer will give a counterexample which is a set A
over Σ1 that is decidable, along with a definition of Turing machine MA that decides A
(with a justification why this Turing machine accepts all strings in A and rejects all strings
not in A), and then either a description of the language of Mnew that results when setting
the Turing machine M = MA and an explanation why L(Mnew) ̸= EXTEND(A) or a
description why Mnew is not a decider and therefore can’t witness that EXTEND(A) is
decidable.

(b) (Graded for correctness) Prove that this Turing machine construction cannot be used to
prove that the class of recognizable languages over {0, 1} is closed under the SUBSTRING
set operation. A complete and correct answer will give a counterexample of a specific
language B and Turing machine MB recognizing it (with a justification why this Turing
machine accepts all and only strings in B), and then a description of the language of
Mnew that results when setting the Turing machine M = MB and an explanation why
L(Mnew) ̸= SUBSTRING(B)

Copyright Mia Minnes, 2024, Version December 30, 2024 (25)

(c) (Graded for completeness) Define a new construction by slightly modifiying this one that
can be used to prove that the class of recognizable languages over {0, 1} is closed under
SUBSTRING. Justify that your construction works. The proof of correctness for the
closure claim can be structured like: “Let L1 be a recognizable language over {0, 1} and
assume we are given a Turing machine M1 so that L(M1) = L1. Consider the new Turing
machine Mnew defined above. We will show that L(Mnew) = SUBSTRING(L1)... com-
plete the proof by proving subset inclusion in two directions, by tracing the relevant Turing
machine computations”

(d) (Graded for completeness) Prove that the class of recognizable languages over {0, 1} is closed
under EXTEND.

3. Computational problems (12 points): Recall the definitions of some example computa-
tional problems from class

Acceptance problem

. . . for DFA ADFA {⟨B,w⟩ | B is a DFA that accepts input string w}

. . . for NFA ANFA {⟨B,w⟩ | B is a NFA that accepts input string w}

. . . for regular expressions AREX {⟨R,w⟩ | R is a regular expression that generates input string w}

. . . for CFG ACFG {⟨G,w⟩ | G is a context-free grammar that generates input string w}

. . . for PDA APDA {⟨B,w⟩ | B is a PDA that accepts input string w}

Language emptiness testing

. . . for DFA EDFA {⟨A⟩ | A is a DFA and L(A) = ∅}

. . . for NFA ENFA {⟨A⟩ | A is a NFA and L(A) = ∅}

. . . for regular expressions EREX {⟨R⟩ | R is a regular expression and L(R) = ∅}

. . . for CFG ECFG {⟨G⟩ | G is a context-free grammar and L(G) = ∅}

. . . for PDA EPDA {⟨A⟩ | A is a PDA and L(A) = ∅}

Language equality testing

. . . for DFA EQDFA {⟨A,B⟩ | A and B are DFAs and L(A) = L(B)}

. . . for NFA EQNFA {⟨A,B⟩ | A and B are NFAs and L(A) = L(B)}

. . . for regular expressions EQREX {⟨R,R′⟩ | R and R′ are regular expressions and L(R) = L(R′)}

. . . for CFG EQCFG {⟨G,G′⟩ | G and G′ are CFGs and L(G) = L(G′)}

. . . for PDA EQPDA {⟨A,B⟩ | A and B are PDAs and L(A) = L(B)}

(a) (Graded for completeness) Pick five of the computational problems above and give examples
(preferably different from the ones we talked about in class) of strings that are in each of
the corresponding languages. Remember to use the notation ⟨· · · ⟩ to denote the string
encoding of relevant objects. Extension, not for credit: Explain why it’s hard to write a
specific string of 0s and 1s and make a claim about membership in one of these sets.

(b) (Graded for completeness) Computational problems can also be defined about Turing ma-
chines. Consider the two high-level descriptions of Turing machines below. Reverse-engineer

Copyright Mia Minnes, 2024, Version December 30, 2024 (26)

them to define the computational problem that is being recognized, where L(MDFA) is the
language corresponding to this computational problem about DFA and L(MTM) is the lan-
guage corresponding to this computational problem about Turing machines. Hint: the
computational problem is not acceptance, language emptiness, or language equality (but is
related to one of them).

Let s1, s2, . . . be a list of all strings in {0, 1}∗ in string (shortlex) order. Consider the
following Turing machines

MDFA = “On input ⟨D⟩ where D is a DFA :

1. for i = 1, 2, 3, . . .

2. Run D on si

3. If it accepts, accept.

4. If it rejects, go to the next iteration of the loop”

and

MTM = “On input ⟨T ⟩ where T is a Turing machine :

1. for i = 1, 2, 3, . . .

2. Run T for i steps on each input s1, s2, . . . , si in turn

3. If T has accepted any of these, accept.

4. Otherwise, go to the next iteration of the loop”

4. Computational problems (10 points): For each of the following statements, determine if it
is true or false. Clearly label your choice by starting your solution with True or False and then
provide a justification for your answer.

(a) (Graded for correctness) Prove that the language

{⟨D⟩ | D is an NFA over {0, 1} and L(D) = L(0∗ ∪ 1∗)}

is decidable.

(b) (Graded for correctness) Prove that the language

{⟨R1, R2⟩ | R1, R2 are regular expressions over {0, 1} and L(R1) ⊆ L(R2)}

is decidable.

Copyright Mia Minnes, 2024, Version December 30, 2024 (27)

HW6CSE105F24: Homework assignment 6 Due: December 3, 2024 at 5pm, via Gradescope

In this assignment,

You will practice analyzing, designing, and working with Turing machines. You will use general
constructions and specific machines to explore the classes of recognizable and decidable languages.
You will explore various ways to encode machines as strings so that computational problems can
be recognized.

Resources: To review the topics for this assignment, see the class material from Weeks 8 and
9. We will post frequently asked questions and our answers to them in a pinned Piazza post.

Reading and extra practice problems: Sipser Sections 4.2, 5.3, 5.1. Chapter 4 exercises 4.9,
4.12. Chapter 5 exercises 5.4, 5.5, 5.6, 5.7. Chapter 5 problems 5.22, 5.23, 5.24, 5.28

For all HW assignments: Weekly homework may be done individually or in groups of up
to 3 students. You may switch HW partners for different HW assignments. Please ensure
your name(s) and PID(s) are clearly visible on the first page of your homework submission and
then upload the PDF to Gradescope. If working in a group, submit only one submission per
group: one partner uploads the submission through their Gradescope account and then adds the
other group member(s) to the Gradescope submission by selecting their name(s) in the “Add
Group Members” dialog box. You will need to re-add your group member(s) every time you
resubmit a new version of your assignment. Each homework question will be graded either for
correctness (including clear and precise explanations and justifications of all answers) or fair
effort completeness. For “graded for correctness” questions: collaboration is allowed only with
CSE 105 students in your group; if your group has questions about a problem, you may ask in
drop-in help hours or post a private post (visible only to the Instructors) on Piazza. For “graded
for completeness” questions: collaboration is allowed with any CSE 105 students this quarter; if
your group has questions about a problem, you may ask in drop-in help hours or post a public
post on Piazza.

All submitted homework for this class must be typed. You can use a word processing editor if
you like (Microsoft Word, Open Office, Notepad, Vim, Google Docs, etc.) but you might find
it useful to take this opportunity to learn LaTeX. LaTeX is a markup language used widely in
computer science and mathematics. The homework assignments are typed using LaTeX and you
can use the source files as templates for typesetting your solutions. To generate state diagrams of
machines,you can (1) use the LaTex tikzpicture environment (see templates in the class notes),
or (2)) use the software tools Flap.js or JFLAP described in the class syllabus (and include a
screenshot in your PDF), or (3) you can carefully and clearly hand-draw the diagram and take a
picture and include it in your PDF. We recommend that you submit early drafts to Gradescope
so that in case of any technical difficulties, at least some of your work is present. You may update
your submission as many times as you’d like up to the deadline.

Integrity reminders

Copyright Mia Minnes, 2024, Version December 30, 2024 (28)

• Problems should be solved together, not divided up between the partners. The homework
is designed to give you practice with the main concepts and techniques of the course, while
getting to know and learn from your classmates.

• You may not collaborate on homework questions graded for correctness with anyone other
than your group members. You may ask questions about the homework in office hours (of
the instructor, TAs, and/or tutors) and on Piazza (as private notes viewable only to the
Instructors). You cannot use any online resources about the course content other than the
class material from this quarter – this is primarily to ensure that we all use consistent nota-
tion and definitions (aligned with the textbook) and also to protect the learning experience
you will have when the ‘aha’ moments of solving the problem authentically happen.

• Do not share written solutions or partial solutions for homework with other students in
the class who are not in your group. Doing so would dilute their learning experience and
detract from their success in the class.

You will submit this assignment via Gradescope (https://www.gradescope.com) in the assign-
ment called “hw6CSE105F24”.

Assigned questions

1. What’s wrong with these reductions? (if anything) (15 points): Suppose your friends
are practicing coming up with mapping reductions A ≤m B and their witnessing functions
f : Σ∗ → Σ∗. For each of the following attempts, determine if it has error(s) or is correct. Do
so by labelling each attempt with all and only the labels below that apply, and justifying this
labelling.

• Error Type 1: The given function can’t witness the claimed mapping reduction because
there exists an x ∈ A such that f(x) ̸∈ B.

• Error Type 2: The given function can’t witness the claimed mapping reduction because
there exists an x ̸∈ A such that f(x) ∈ B.

• Error Type 3: The given function can’t witness the claimed mapping reduction because the
specified function is not computable.

• Correct: The claimed mapping reduction is true and is witnessed by the given function.

Clearly present your answer by providing a brief (3-4 sentences or so) justification for whether
each of these labels applies to each example.

Copyright Mia Minnes, 2024, Version December 30, 2024 (29)

https://www.gradescope.com

(a) (Graded for completeness) 13 ATM ≤m HALTTM and

f(x) =

⟨ qaccstart , ε⟩ if x = ⟨M,w⟩ for a Turing machine M and string w

and w ∈ L(M)

⟨ q0start qacc

0, 1, → R

⟩ otherwise

(b) (Graded for completeness) ATM ≤m EQTM with

f(x) =

⟨ qaccstart , Mw⟩ if x = ⟨M,w⟩ for a Turing machine M and string w

⟨ qaccstart , qrejstart qacc ⟩ otherwise.

Where for each Turing machine M , we define

Mw = “On input y

1. Simulate M on w.

2. If it accepts, accept.

3. If it rejects, reject.”

(c) (Graded for correctness) 14 HALTTM ≤m EQTM with

f(x) =

⟨ qaccstart , Mw⟩ if x = ⟨M,w⟩ for a Turing machine M and string w

⟨ qaccstart , qrejstart qacc ⟩ otherwise.

Where for each Turing machine M , we define

Mw = “On input y

1. If y is not the empty string, reject.

2. Else, simulate M on w.

3. If it accepts, accept.

4. If it rejects, reject.”
13This means you will get full credit so long as your submission demonstrates honest effort to answer the

question. You will not be penalized for incorrect answers. To demonstrate your honest effort in answering the
question, we expect you to include your attempt to answer *each* part of the question. If you get stuck with
your attempt, you can still demonstrate your effort by explaining where you got stuck and what you did to try
to get unstuck.

14This means your solution will be evaluated not only on the correctness of your answers, but on your ability
to present your ideas clearly and logically. You should explain how you arrived at your conclusions, using
mathematically sound reasoning. Whether you use formal proof techniques or write a more informal argument
for why something is true, your answers should always be well-supported. Your goal should be to convince the
reader that your results and methods are sound.

Copyright Mia Minnes, 2024, Version December 30, 2024 (30)

(d) (Graded for correctness) {ww | w ∈ {0, 1}∗} ≤ ∅ and f(x) = 1 for each x ∈ {0, 1}∗.
(e) (Graded for correctness) ∅ ≤m {ww | w ∈ {0, 1}∗} and f(x) = 1 for each x ∈ {0, 1}∗.

2. Using mapping reductions (14 points): Consider the following computational problems
we’ve discussed

ATM = {⟨M,w⟩ | M is a Turing machine, w is a string and M accepts w}
HALTTM = {⟨M,w⟩ | M is a Turing machine, w is a string and M halts on w}

ETM = {⟨M⟩ | M is a Turing machine and L(M) = ∅}
EQTM = {⟨M1,M2⟩ | M1,M2 are both Turing machines and L(M1) = L(M2)}

and the new computational problem

TwoTM = {⟨M⟩ | M is a Turing machine and M accepts exactly one string}

NOTE: the intended definition of TwoTM is that M accepts exactly two strings.

(a) (Graded for correctness) Give an example of a string that is an element of TwoTM and a
string that is not an element of TwoTM and briefly justify your choices.

(b) (Graded for completeness) Prove that TwoTM is not decidable by showing that ATM ≤m

TwoTM .

(c) (Graded for correctness) Give a different proof that TwoTM is not decidable by showing
that HALTTM ≤m TwoTM .

(d) (Graded for completeness) Is TwoTM recognizable? Justify your answer.

3. Using mapping reductions (14 points): Consider the following computational problems
we’ve discussed

ATM = {⟨M,w⟩ | M is a Turing machine, w is a string and M accepts w}
HALTTM = {⟨M,w⟩ | M is a Turing machine, w is a string and M halts on w}

ETM = {⟨M⟩ | M is a Turing machine and L(M) = ∅}
EQTM = {⟨M1,M2⟩ | M1,M2 are both Turing machines and L(M1) = L(M2)}

and the new computational problem

EvensTM = {⟨M⟩ | M is a Turing machine and any string that M accepts must be even length

(but there may even length strings that M doesn’t accept)}

(a) (Graded for correctness) Give an example of a string that is an element of EvensTM and a
string that is not an element of EvensTM and briefly justify your choices.

(b) (Graded for completeness) Prove thatEvensTM is not decidable by showing thatHALTTM ≤m

EvensTM . This was changed Nov 26.

Copyright Mia Minnes, 2024, Version December 30, 2024 (31)

(c) (Graded for correctness) Give a different proof that EvensTM is not decidable by showing
that ATM ≤m EvensTM . This was changed Nov 26.

(d) (Graded for completeness) Is EvensTM recognizable? Justify your answer.

4. Examples of languages (7 points):

For each part of the question, use precise mathematical notation or English to define your
examples and then briefly justify why they work.

(a) (Graded for correctness) Two undecidable languages L1 and L2 over the same alphabet
whose intersection L1 ∩ L2 is decidable, or write NONE if there is no such example (and
explain why).

(b) (Graded for correctness) A regular language L3 and an unrecognizable language L4 over the
same alphabet whose set-wise concatenation L3 ◦ L4 is unrecognizable, or write NONE if
there is no such example (and explain why).

(c) (Graded for completeness) A co-recognizable language L5 that is NP-complete, or write
NONE if there is no such example (and explain why). Recall the definition: A language L
over an alphabet Σ is called co-recognizable if its complement, defined as Σ∗ \ L = {x ∈
Σ∗ | x /∈ L}, is Turing-recognizable.

Copyright Mia Minnes, 2024, Version December 30, 2024 (32)

ProjectCSE105F24: Project Due December 11, 2024 at 11am

The CSE 105 project is designed for you to go deeper and extend your work on assignments and
to see how some of the abstract notions we discuss can be implemented in concrete ways. The
project is an individual assignment and has two tasks:

Task 1: Illustrating the decidability of a computational problem, and

Task 2: Illustrating a mapping reduction

What resources can you use? This project must be completed individually, without any
help from other people, including the course staff (other than logistics support if you get stuck
with screencast). You can use any of this quarter’s CSE 105 offering (notes, readings, class
videos, homework feedback). Tools for drawing state diagrams (like Flap.js and JFLAP and the
PrairieLearn automata library) can be used to help draw the diagrams in the project too.

These resources should be more than enough. If you are struggling to get started and want to
look elsewhere online, you must acknowledge this by listing and citing any resources you consult
(even if you do not explicitly quote them), including any large-language model style resources
(ChatGPT, Bard, Co-Pilot, etc.). Link directly to them and include the name of the author /
video creator, any and all search strings or prompts you used, and the reason you consulted this
reference. The work you submit for the project needs to be your own. Again, you shouldn’t need
to look anywhere other than this quarter’s material and doing so may result in definitions that
conflict with our conventions in this class so think carefully before you go down this path.

If you get stuck on any part of the project, we encourage you to focus on communicating what
you think the question might mean, including bringing an example from class or homework you
think might be relevant, and include any submission any aspect where you’re unsure. Clear
communication about these theoretical ideas and their applications is one of the main goals of
the project.

Submitting the project You will submit a PDF plus a video file for the first task and a PDF
plus a video fiile for the second task. All file submissions will be in Gradescope.

Copyright Mia Minnes, 2024, Version December 30, 2024 (33)

Your video: You may produce screencasts with any software you choose. One option is to
record yourself with Zoom; a tutorial on how to use Zoom to record a screencast (courtesy of
Prof. Joe Politz) is here:

https://drive.google.com/open?id=1KROMAQuTCk40zwrEFotlYSJJQdcG_GUU.

The video that was produced from that recording session in Zoom is here:

https://drive.google.com/open?id=1MxJN6CQcXqIbOekDYMxjh7mTt1TyRVMl

Please send an email to the instructors (minnes@ucsd.edu) if you have concerns about the video
/ screencast components of this project or cannot complete projects in this style for some reason.

Reference definitions for computational problems from Section 4.1:

Acceptance problem

. . . for DFA ADFA {⟨B,w⟩ | B is a DFA that accepts input string w}

. . . for NFA ANFA {⟨B,w⟩ | B is a NFA that accepts input string w}

. . . for regular
expressions

AREX {⟨R,w⟩ | R is a regular expression that generates input string w}

. . . for CFG ACFG {⟨G,w⟩ | G is a context-free grammar that generates input string w}

. . . for PDA APDA {⟨B,w⟩ | B is a PDA that accepts input string w}

Language emptiness testing

. . . for DFA EDFA {⟨A⟩ | A is a DFA and L(A) = ∅}

. . . for NFA ENFA {⟨A⟩ | A is a NFA and L(A) = ∅}

. . . for regular
expressions

EREX {⟨R⟩ | R is a regular expression and L(R) = ∅}

. . . for CFG ECFG {⟨G⟩ | G is a context-free grammar and L(G) = ∅}

. . . for PDA EPDA {⟨A⟩ | A is a PDA and L(A) = ∅}

Language equality testing

. . . for DFA EQDFA {⟨A,B⟩ | A and B are DFAs and L(A) = L(B)}

. . . for NFA EQNFA {⟨A,B⟩ | A and B are NFAs and L(A) = L(B)}

. . . for regular
expressions

EQREX {⟨R,R′⟩ | R and R′ are regular expressions and L(R) = L(R′)}

. . . for CFG EQCFG {⟨G,G′⟩ | G and G′ are CFGs and L(G) = L(G′)}

. . . for PDA EQPDA {⟨A,B⟩ | A and B are PDAs and L(A) = L(B)}

Copyright Mia Minnes, 2024, Version December 30, 2024 (34)

https://drive.google.com/open?id=1KROMAQuTCk40zwrEFotlYSJJQdcG_GUU
https://drive.google.com/open?id=1MxJN6CQcXqIbOekDYMxjh7mTt1TyRVMl

Task 1: Illustrating the decidability of a computational problem Many computational
problems are decidable, sometimes using beautiful algorithms. In this part of the project, you’ll
choose a decidable computational problem, and demonstrate the proof that it is decidable by
building a program in a programming language of your choice (aka a high-level description of
a Turing machine) that decides it. You will then demonstrate how your construction works for
some test examples.

Specifically:

1. Choose a decidable computational problem from Section 4.1. Note: if you’d like to consider
a different computational problem instead, please check with Prof. Minnes first. You must
do so no later than the start of Week 9.

2. Write a program in Java, Python, JavaScript, C++ , or another programming language
of your choosing that decides this computational problem. The function input must be
a string and part of your work in this program is to design string representations for
arbitrary instances of the model of computation the computational problem you picked is
about (e.g. DFA, NFA, regular expressions, CFG, or NFA). The function output must be
a boolean true (if the string is in the set representing the computational problem) or false
(if the string is not in the set representing the computational problem).

• You may use our class notes and the textbook for ideas on the algorithm that your
program will implement.

• If you would like, you may use aids such as co-pilot or ChatGPT to help you write this
program. However, you should test the code that is produced and be able to explain
what it is doing. Your code needs to be well-organized and well-documented. As a
header in your code file, include a comment block describing any resources that were
used to help generate your code, including any and all prompts used in interactions
with LLM coding tools.

3. To demonstrate your program, select one string that is in the set representing the com-
putational problem, and one string that is not in the set representing the computational
problem, explain why these strings are valid examples, and demonstrate running your pro-
gram on each to get the appropriate output.

Presenting your reasoning and demonstrating it via screenshare are important skills that also
show us a lot of your learning. Getting practice with this style of presentation is a good thing
for you to learn in general and a rich way for us to assess your skills. To demonstrate your work,
you will create a 3-5 minute screencast video explaining your code design and demonstrating its
functionality.

Copyright Mia Minnes, 2024, Version December 30, 2024 (35)

Checklist for submission For this task, you will submit a PDF plus a video file.

(PDF) Writeup includes a clear specification of computational problem being decided.

(PDF) Documentation for program deciding this computational problem: include a description of
how input strings are parsed to represent instances of the computational problem.

(PDF) Clear specification of two example strings, explaining which is in the set (and why) and
which is not in the set (and why not).

(PDF) Project submission includes a printout of code for program implementing algorithm to
decide the computational problem, as well as screen shots demonstrating running your
program on your example strings.

(PDF) Project writeup is typed or clearly hand drawn with precise language and notation for all
terms.

(Video) Start with your face and your student ID visible for a few seconds at the beginning, and
introduce yourself audibly while on screen. You don’t have to be on camera for the rest of
the video, though it’s fine if you are. We are looking for a brief confirmation that it’s you
creating the video and doing the work you submitted.

(Video) Present the computational problem you will be working with, and example strings that
you will be using, including explanations of why you chose this problem and these strings
(and why one of the strings is in the set and why the other is not).

(Video) Show on the screen and explain the code for your program, including the software design
choices you made (e.g. which data structures are you using, etc.) and any resources you
used. The video should clearly describe which programming language was chosen for the
implementation and gives the reasons why.

(Video) Demonstrate running your code on each of your example inputs. The video should include
screencasts of running the code live. Explain why the output of your program is what you
would expect, by connecting the output of the the definition of the computational problem
and your chosen parsing of input strings.

(Video) Logistics: video needs to load correctly, be between 3 and 5 minutes, show your face and
ID, and you introduce yourself audibly while on screen.

Note: Clarity and brevity are both important aspects of your video. In previous years, we’ve
seen students speed up their videos to get below the 5 minute upper bound. This is ok so long
as it doesn’t compromise clarity. If the graders need to slow your video down to understand it,
it may not earn full credit.

Copyright Mia Minnes, 2024, Version December 30, 2024 (36)

Task 2: Illustrating a mapping reduction We can use mapping reductions to prove that
interesting computational problems are undecidable, building on the undecidability of other com-
putational problems. In this part of the project, you’ll choose a specificmapping reduction and
implement a computable function that witnesses it using a programming language of your choice
(aka a high-level description of a Turing machine that computes it). You will then demonstrate
how your construction works for some test examples.

Specifically:

1. Choose a mapping reduction we discussed in class or in the homework or in review quizzes
or in the textbook where both sets being compared are undecidable. Note: if you’d like
to consider a mapping reduction we have not discussed instead, please check with Prof.
Minnes first. You must do so no later than the start of Week 9.

2. Write a program in Java, Python, JavaScript, C++ , or another programming language of
your choosing that implements a computable function witnessing this mapping reduction.
The function input must be a string and the function output must be a string. Part
of your work in this program is to design string representations for arbitrary instances of
the model of computation the computational problems being compared in the mapping
reduction. Your function will need to be able to process *any* string as input.

• You may use our class notes and the textbook for ideas on the algorithm that your
program will implement.

• If you would like, you may use aids such as co-pilot or ChatGPT to help you write this
program. However, you should test the code that is produced and be able to explain
what it is doing. Your code needs to be well-organized and well-documented. As a
header in your code file, include a comment block describing any resources that were
used to help generate your code, including any and all prompts used in interactions
with LLM coding tools.

3. To demonstrate your program, you will need to run it for an example positive and negative
instance. That is to say, if you are implementing a computable function witnessing X ≤m

Y , you will select one string that is in X and one string that is not in X, and you will
demonstrate running your program on each of these strings and explain why the output of
the function is good.

Presenting your reasoning and demonstrating it via screenshare are important skills that also
show us a lot of your learning. Getting practice with this style of presentation is a good thing
for you to learn in general and a rich way for us to assess your skills. To demonstrate your work,
you will create a 3-5 minute screencast video explaining your code design and demonstrating its
functionality.

Copyright Mia Minnes, 2024, Version December 30, 2024 (37)

Checklist for submission For this task, you will submit a PDF plus a video file.

(PDF) Writeup includes a clear specification of mapping reduction being witnessed, and both sets
in the reduction are undecidable.

(PDF) Documentation for program computing the function witnessing this mapping reduction:
include a description of how input strings are parsed and how output strings correspond
to input strings.

(PDF) Clear specification of two example strings, explaining which is is a positive instance (and
why) and which is a negative instance (and why not).

(PDF) Project submission includes a printout of code for program computing the function witness-
ing the mapping reduction, as well as screen shots demonstrating running your program
on your example strings.

(PDF) Project writeup is typed or clearly hand drawn with precise language and notation for all
terms.

(Video) Start with your face and your student ID visible for a few seconds at the beginning, and
introduce yourself audibly while on screen. You don’t have to be on camera for the rest of
the video, though it’s fine if you are. We are looking for a brief confirmation that it’s you
creating the video and doing the work you submitted.

(Video) Present the mapping reduction you will be working with, and example strings that you will
be using, including explanations of why you chose this reduction and these strings (and
why one of the strings is a positive instance and the other is a negative instance).

(Video) Show on the screen and explain the code for your program, including the software design
choices you made (e.g. which data structures are you using, etc.) and any resources you
used. The video should clearly describe which programming language was chosen for the
implementation and gives the reasons why.

(Video) Demonstrate running your code on each of your example inputs. The video should include
screencasts of running the code live. Explain why the output of your program is what you
would expect, by connecting the output of the program to the definition of the mapping
reduction and your chosen parsing of input strings.

(Video) Logistics: video needs to load correctly, be between 3 and 5 minutes, show your face and
ID, and you introduce yourself audibly while on screen.

Note: Clarity and brevity are both important aspects of your video. In previous years, we’ve
seen students speed up their videos to get below the 5 minute upper bound. This is ok so long
as it doesn’t compromise clarity. If the graders need to slow your video down to understand it,
it may not earn full credit.

Copyright Mia Minnes, 2024, Version December 30, 2024 (38)

