Midterm Test 1 review, turing
machines continued

CSE 105 Week 7 Discussion

Deadlines and Logistics

e Review Test 1score, schedule attempt 2
e Do review quizzes on PrairieLearn
e HW5 due 11/19/24 at 5pm

http://us.prairielearn.com/

Midterm attempt 1 review

In the area below, create a state diagram of an NFA with at most 4 states recognizing the following language over the alphabet
{0,1}:

A ={w € {0,1}" | wis odd length string ending in 1 or w is even length string ending in 0}
Example strings in this language are: 1, 00, 001

Example strings not in this language are: €, 0

In this question, we'll consider general constructions over a fixed alphabet ..

Suppose we are given a DFA with set of states @ 5y, input alphabet X, transition function d57 : Qs X X — Q 1y, start state gy,
and set of accepting states F'

M = (QM72)6M7QM>FM)
and assume that gy & Q) is a fresh state.

Define the new NFA

N = (QM U {q0}a 2’ 6N, qo, {QM})

where

{d' €Qumlag=0m((¢,a))} ifqeQm,acX
on((g,a)) =4 Fu ifg=gqo,a=¢
0 otherwise

There is at least one example for the DFA M where L(M) # L(M)* and L(N) = L(M)*.

There is at least one example for the DFA M where the number of edges in the state diagram of M equals the number of
edges in the state diagram of V.

For all choices of the DFA M, the associated NFA IV will have strictly more states than M.
For all choices of the DFA M, when L(M) = ¥* then L(N) = 0.

Definition: A positive integer p is a pumping length of a language L over alphabet 3 means that, for each string s € X*, if
|s| > pand s € L, then there are strings x, y, z such that s = zyz and |y| > 0, foreachi > 0, zy‘z € L, and |zy| < p.

In particular, this means that a positive integer p is not a pumping length of a language L over alphabet Y iff
Js(|s| >pAse LAVaVYz ((s=azyzAlyl >0A|zy| <p)— Fi(i > 0Azy'2 ¢ L)))
Select all and only true statements below.
A pumping length for {0, 1} is p = 2
A pumping length for {0%0¢ | i > 0}isp = 2
A pumping length for {0°1% | i > 0}isp = 3

A pumping length for {00,01,10,11}isp =1

Select all possible options that apply. @

Consider an arbitrary alphabet 3.

The class of context-free languages over 3 is closed under complementation.
The class of context-free languages over . is closed under Kleene star.
The class of context-free languages over . is closed under union.

The class of context-free languages over X is closed under set-wise concatenation.

Select all possible options that apply. @

The class of regulaf Ianguages over 3 is closed under conip1einentation.

o
The class of regular languages over X is closed under union.
NN
o The class of regular languages over X is closed under intersection.
[VX
- The class of regular languages over ¥ is closed under concatenation.
we
The class of regular languages over ¥ is closed under Kleene star.
—RKWnE_
AL E The class of context-free languages over Y is closed under complementation.
The class of context-free languages over X is closed under union.
Kol
_ The class of context-free languages over ¥ is closed under intersection.
CALSS
o The class of context-free languages over X is closed under concatenation.
<o

The class of context-free languages over Y is closed under Kleene star.

Recall: for any two sets X and Y, we define:

e X =Y means Vz(z € X <> z € Y). In this case, we say X and Y are equal sets.

e X#YmeansJz((z € XNz g Y)V(z ¢ X ANz €Y)).Inthis case, we say X and Y are not equal sets.
e X CYmeansVz(z € X — z € Y)and X # Y. Inthis case, we say X is a proper subset of Y.

e X DY meansVz(z € Y — z € X)and X # Y. Inthis case, we say X is a proper superset Y are equal sets.

Select all and only the true sentences.

The union of any two regular sets is regular.

The complement of a nonregular set is nonregular
The complement of a regular set is regular.

Every proper subset of a nonregular set is nonregular.

The union of two nonregular sets is nonregular.

Select all possible options that apply. @

Recall: for any two sets X and Y, we define:

e X=YmeansVz(z e X <z cY)

e X#YmeansJz((z e XNz ¢Y)V(z g XANze€Y))
e XCYmeansVz(r e X »zcY)and X #Y

e X DY meansVz(z €Y »z € X)and X #Y

Let IV be the NFA over the alphabet {a, b} with state diagram

a,b a,b

a
start —> ql

L(N) ={w € {a,b}* | N accepts w}

L(N) = L((aUb)*a(aUbb)
 L(N) 2 L((aUb)*alaUb)d)
| L(N) = L((aUb)*a(aUb)*b)

L(N) 2 L((aUb)*ab(a Ub)*)
Select all possible options that apply. @

Y

Turing-recognizable and Turing-decidable

e Deciders are Turing machines that halt on all inputs; they never loop; they

always make a decision to accept or reject

e Call a language Turing-recognizable if some Turing machine recognizes it
e Call alanguage Turing-decidable if some decider decides it

Toy examples for recap: 0.0 R

start —> @I

Decider? Yes / No

s (52)

Decider? Yes /

O;0,R 7~
start—» — {é@l

Decider? Yes / No

0;0
1;0
0,0,

start —'

Decider? Yes /

5
5

R
R
R

No

Multiple descriptions

Describing Turing machines (Sipser p. 185) To define a Turing machine, we could give a

e Formal definition: the 7-tuple of parameters including set of states, input alphabet, tape alphabet,
transition function, start state, accept state, and reject state; or, (Q,X.T,4.qo. Qaccepts Greject)

e Implementation-level definition: English prose that describes the Turing machine head move-
ments relative to contents of tape, and conditions for accepting / rejecting based on those contents.

e High-level description: description of algorithm (precise sequence of instructions), without im-
plementation details of machine. As part of this description, can “call” and run another TM as a
subroutine.

Multiple descriptions

Describing Turing machines (Sipser p. 185) To define a Turing machine, we could give a

e Formal definition: the 7-tuple of parameters including set of states, input alphabet, tape alphabet,
transition function, start state, accept state, and reject state; or, (Q,X.I", 4. o, Gaccept: Greject)

e Implementation-level definition: English prose that describes the Turing machine head move-
ments relative to contents of tape, and conditions for accepting / rejecting based on those contents.

e High-level description: description of algorithm (precise sequence of instructions), without im-
plementation details of machine. As part of this description, can “call” and run another TM as a
subroutine.

Properties of languages

1. Regular
a. Recognized by a DFA/NFA
b. Described by a regex

2. Context free

a. Recognized by a PDA
b. Generated by a CFG

3. (Turing) Decidable
a. Canbe decided by a Tm

4. (Turing) Recognizable

a. Can be recognized by a Tm

Context-free

Algorithm computation

Church-Turing Thesis

Anything that is computable is computable with a Turing machine
because any method of computation using finite time and finite
resources will be equally expressive to that of a Turing machine.

Vocabulary check

1. Are all decidable languages recognizable?
2. Iflanguage A is recognizable and language B is decidable, is |Al > |BI
3. If Mis a Turing machine, what is <M>?

Representations of algorithms

To decide these problems, we need to represent the

objects of interest as strings For inputs that aren't strings,

we have to encode the object
(represent it as a string) first

To define TM M:

~On INputw .2 Notation:
. <0O> is the string that represents (encodes) the
object O

<O, ..., O,> is the single string that
represents the list of objects Oy, ..., O,

Turing Decidable Languages

Recap : Turing decidable languages are closed under complementation

Turing Decidable Languages - Recap

1. If alanguage is decidable if and only if it is co-recognizable and recognizable.

2. Iftwo languages over a fixed alphabet are turing-decidable, then their union is
decidable as well

3. Iftwo languages over a fixed alphabet are turing-recognizable, then their union
is recognizable as well

Last Wednesday'’s “lecture”

Computational problems:

Acceptance problem

...for DFA Apra {(B,w) | B is a DFA that accepts input string w}
..for NFA Axra {(B,w) | B is a NFA that accepts input string w}
...for regular expressions Appx {(R,w) | R is a regular expression that generates input string w}
...for CFG Acre {{G,w) | G is a context-free grammar that generates input string w}
..for PDA Appa {(B,w) | B is a PDA that accepts input string w}
Language emptiness testing
...for DFA Epra {(A)| Ais a DFA and L(A) = 0}
..for NFA Exra {(A)| Ais a NFA and L(A) = 0}
...for regular expressions FEgrex {(R) | R is a regular expression and L(R) = 0}
...for CFG Ecre {(G) | G is a context-free grammar and L(G) = @}
..for PDA Eppa {(A)| Aisa PDA and L(A) = 0}

Language equality testing

...for DFA

..for NFA
... for regular expressions
...for CFG

..for PDA

EQpra
EQnra
EQgrex
EQcra
EQppa

{{A,B) | A and B are DFAs and L(A) = L(B)}

{{A,B) | A and B are NFAs and L(A) = L(B)}

{(R,R") | R and R’ are regular expressions and L(R) = L(R')}
{(G,G") | G and G’ are CFGs and L(G) = L(G')}

{(A,B) | A and B are PDAs and L(A) = L(B)}

