Midterm Test 1 review, turing machines continued

CSE 105 Week 7 Discussion

Deadlines and Logistics

- Review Test 1 score, schedule attempt 2
- Do review quizzes on <u>PrairieLearn</u>
- HW 5 due 11/19/24 at 5pm

Midterm attempt 1 review

In the area below, create a state diagram of an NFA with **at most** 4 **states** recognizing the following language over the alphabet $\{0,1\}$:

$$A = \{w \in \{0,1\}^* \mid w \text{ is odd length string ending in } 1 \text{ or } w \text{ is even length string ending in } 0\}$$

Example strings in this language are: 1,00,001

Example strings not in this language are: ε , 0

In this question, we'll consider general constructions over a fixed alphabet Σ .

Suppose we are given a DFA with set of states Q_M , input alphabet Σ , transition function $\delta_M:Q_M\times\Sigma\to Q_M$, start state q_M , and set of accepting states F_M

$$M=(Q_M,\Sigma,\delta_M,q_M,F_M)$$

and assume that $q_0 \notin Q_M$ is a fresh state.

Define the new NFA

$$N=(Q_M\cup\{q_0\},\Sigma,\delta_N,q_0,\{q_M\})$$

where

$$\delta_{N}(\ (q,a)\) = egin{cases} \{q' \in Q_{M} \mid q = \delta_{M}(\ (q',a)\)\} & ext{if } q \in Q_{M}, a \in \Sigma \ F_{M} & ext{if } q = q_{0}, a = arepsilon \ & ext{otherwise} \end{cases}$$

- There is at least one example for the DFA M where $L(M) \neq L(M)^*$ and $L(N) = L(M)^*$.
- There is at least one example for the DFA M where the number of edges in the state diagram of M equals the number of edges in the state diagram of N.
- $oxed{igspace{1.5cm}}$ For all choices of the DFA M, when $L(M)=\Sigma^*$ then $L(N)=\emptyset$.

Definition: A positive integer p is a **pumping length** of a language L over alphabet Σ means that, for each string $s \in \Sigma^*$, if $|s| \ge p$ and $s \in L$, then there are strings x, y, z such that s = xyz and |y| > 0, for each $i \ge 0$, $xy^iz \in L$, and $|xy| \le p$.

In particular, this means that a positive integer p is **not a pumping length** of a language L over alphabet Σ iff

$$\exists s \ (\ |s| \geq p \land s \in L \land orall x orall y orall z \ (\ (s = xyz \land |y| > 0 \land |xy| \leq p\)
ightarrow \exists i (i \geq 0 \land xy^iz
otin L))\)$$

Select all and only true statements below.

A pumping length for $\{0,1\}$ is p=2

Select all possible options that apply.

- A pumping length for $\{0^i0^i\mid i\geq 0\}$ is p=2
- $oxed{\ }$ A pumping length for $\{0^i1^i\mid i\geq 0\}$ is p=3
- A pumping length for $\{00, 01, 10, 11\}$ is p = 1
- p A paintping length for $\{00,01,10,11\}$ is p=1

Coi	nsider an arbitrary alphabet Σ .
	The class of context-free languages over $\boldsymbol{\Sigma}$ is closed under complementation.
	The class of context-free languages over Σ is closed under Kleene star.
	The class of context-free languages over Σ is closed under union.
	The class of context-free languages over Σ is closed under set-wise concatenation.

Select all possible options that apply. ?

True	The class of regular languages over Σ is closed under complementation.
True	The class of regular languages over Σ is closed under union.
True	The class of regular languages over Σ is closed under intersection.
True	The class of regular languages over Σ is closed under concatenation.
Tive	The class of regular languages over Σ is closed under Kleene star.
FALSE	The class of context-free languages over Σ is closed under complementation.
true	The class of context-free languages over Σ is closed under union.
FAUSE	The class of context-free languages over Σ is closed under intersection.
True	The class of context-free languages over Σ is closed under concatenation.
True	The class of context-free languages over Σ is closed under Kleene star.

Recall: for any two sets X and Y, we define:

- X=Y means $\forall x(x\in X\leftrightarrow x\in Y)$. In this case, we say X and Y are equal sets.
- $X \neq Y$ means $\exists x ((x \in X \land x \notin Y) \lor (x \notin X \land x \in Y))$. In this case, we say X and Y are not equal sets.
- $X \subseteq Y$ means $\forall x (x \in X \to x \in Y)$ and $X \neq Y$. In this case, we say X is a proper subset of Y.
- $X\supseteq Y$ means $\forall x(x\in Y\to x\in X)$ and $X\neq Y$. In this case, we say X is a proper superset Y are equal sets.

Select all and only the true sentences.

The union of	of any	two	regular	SATS	IS reall	ılar
THE UNION	or arry	LVVO	regular	3013	is regu	II GI

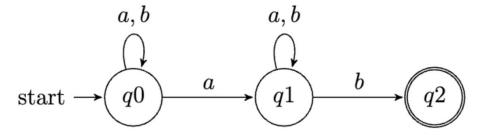
- The complement of a nonregular set is nonregular
- The complement of a regular set is regular.
- Every proper subset of a nonregular set is nonregular.
- The union of two nonregular sets is nonregular.

Select all possible options that apply. ?

Recall: for any two sets X and Y, we define:

- X=Y means $\forall x(x\in X\leftrightarrow x\in Y)$
- $X \neq Y$ means $\exists x ((x \in X \land x \notin Y) \lor (x \notin X \land x \in Y))$
- ullet $X \subsetneq Y$ means $orall x(x \in X o x \in Y)$ and X
 eq Y
- ullet $X\supsetneq Y$ means $orall x(x\in Y o x\in X)$ and X
 eq Y

Let N be the NFA over the alphabet $\{a,b\}$ with state diagram



$$L(N) = \{w \in \{a,b\}^* \mid N ext{ accepts } w\}$$

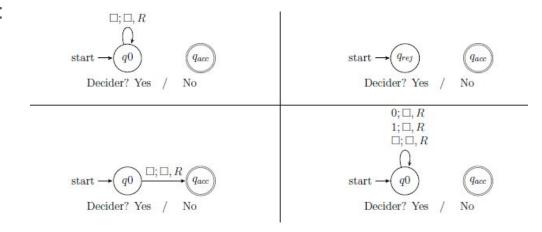
- $\bigcirc \ \ L(N) \supsetneq L(\ (a \cup b)^*a(a \cup b)b\)$
- $L(N) = L((a \cup b)^*a(a \cup b)^*b)$

Select all possible options that apply. \odot

Turing-recognizable and Turing-decidable

- Deciders are Turing machines that halt on all inputs; they never loop; they always make a decision to accept or reject
- Call a language Turing-recognizable if some Turing machine recognizes it
- Call a language Turing-decidable if some decider decides it

Toy examples for recap:



Multiple descriptions

Describing Turing machines (Sipser p. 185) To define a Turing machine, we could give a

- Formal definition: the 7-tuple of parameters including set of states, input alphabet, tape alphabet, transition function, start state, accept state, and reject state; or, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$
- Implementation-level definition: English prose that describes the Turing machine head movements relative to contents of tape, and conditions for accepting / rejecting based on those contents.
- **High-level description**: description of algorithm (precise sequence of instructions), without implementation details of machine. As part of this description, can "call" and run another TM as a subroutine.

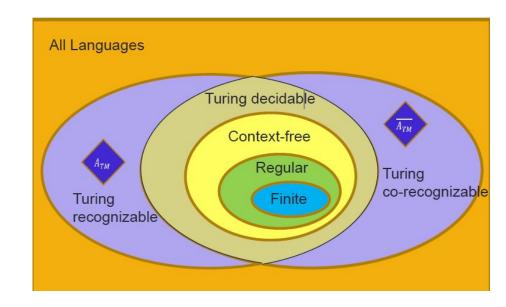
Multiple descriptions

Describing Turing machines (Sipser p. 185) To define a Turing machine, we could give a

- Formal definition: the 7-tuple of parameters including set of states, input alphabet, tape alphabet, transition function, start state, accept state, and reject state; or, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$
- Implementation-level definition: English prose that describes the Turing machine head movements relative to contents of tape, and conditions for accepting / rejecting based on those contents.
- **High-level description**: description of algorithm (precise sequence of instructions), without implementation details of machine. As part of this description, can "call" and run another TM as a subroutine.

Properties of languages

- 1. Regular
 - a. Recognized by a DFA/NFA
 - b. Described by a regex
- 2. Context free
 - a. Recognized by a PDA
 - b. Generated by a CFG
- 3. (Turing) Decidable
 - a. Can be decided by a Tm
- 4. (Turing) Recognizable
 - a. Can be recognized by a Tm



Algorithm computation

Church-Turing Thesis

Anything that is **computable** is computable with a **Turing machine** because any method of computation using finite time and finite resources will be **equally expressive** to that of a Turing machine.

Vocabulary check

- 1. Are all decidable languages recognizable?
- 2. If language A is recognizable and language B is decidable, is |A| > |B|
- 3. If M is a Turing machine, what is <M>?

Representations of algorithms

To decide these problems, we need to represent the objects of interest as **strings**

For inputs that aren't strings, we have to **encode the object** (represent it as a string) first

To define TM M:

- "On input w ...
 - 1. .
 - 2.
 - 3.

Notation:

<O> is the **string** that represents (encodes) the object O

<O₁, ..., O_n> is the single string that represents the list of objects O₁, ..., O_n

Turing Decidable Languages

Recap: Turing decidable languages are closed under complementation

Turing Decidable Languages - Recap

- 1. If a language is decidable if and only if it is co-recognizable and recognizable.
- 2. If two languages over a fixed alphabet are turing-decidable, then their union is decidable as well
- 3. If two languages over a fixed alphabet are turing-recognizable, then their union is recognizable as well

Last Wednesday's "lecture"...

Computational problems:

```
Acceptance problem
... for DFA
                                                   \{\langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w\}
                                       A_{DFA}
... for NFA
                                                   \{(B, w) \mid B \text{ is a NFA that accepts input string } w\}
                                       ANFA
... for regular expressions
                                       AREX
                                                   \{\langle R, w \rangle \mid R \text{ is a regular expression that generates input string } w\}
... for CFG
                                       A_{CFG}
                                                   \{\langle G, w \rangle \mid G \text{ is a context-free grammar that generates input string } w\}
... for PDA
                                       A_{PDA}
                                                   \{\langle B, w \rangle \mid B \text{ is a PDA that accepts input string } w\}
Language emptiness testing
... for DFA
                                                   \{\langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset\}
                                       E_{DFA}
... for NFA
                                       E_{NFA} \quad \{\langle A \rangle \mid A \text{ is a NFA and } L(A) = \emptyset\}
                                       E_{REX} = \{\langle R \rangle \mid R \text{ is a regular expression and } L(R) = \emptyset \}
... for regular expressions
                                       E_{CFG} = \{ \langle G \rangle \mid G \text{ is a context-free grammar and } L(G) = \emptyset \}
... for CFG
... for PDA
                                                   \{\langle A \rangle \mid A \text{ is a PDA and } L(A) = \emptyset\}
                                       E_{PDA}
Language equality testing
... for DFA
                                                   \{\langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}
... for NFA
                                     EQ_{NFA} {\langle A, B \rangle \mid A \text{ and } B \text{ are NFAs and } L(A) = L(B)}
                                     EQ_{REX} {\langle R, R' \rangle \mid R and R' are regular expressions and L(R) = L(R')}
... for regular expressions
                                                   \{\langle G, G' \rangle \mid G \text{ and } G' \text{ are CFGs and } L(G) = L(G')\}
... for CFG
                                     EQ_{CFG}
... for PDA
                                                   \{(A,B) \mid A \text{ and } B \text{ are PDAs and } L(A) = L(B)\}
                                      EQ_{PDA}
```