# Finite Automata

CSE 105 Week 2 Discussion

## Deadlines and Logistics

- Schedule your tests asap on <u>PrairieTest</u>!
- Do review quizzes on <u>PrairieLearn</u>
- HW2 due 10/15/24 (Tue) at 5pm (late submission open until 8am next morning)

#### **DFA** Definition

#### DEFINITION 1.5

A *finite automaton* is a 5-tuple  $(Q, \Sigma, \delta, q_0, F)$ , where

- 1. Q is a finite set called the *states*,
- 2.  $\Sigma$  is a finite set called the *alphabet*,
- 3.  $\delta: Q \times \Sigma \longrightarrow Q$  is the *transition function*, 1
- **4.**  $q_0 \in Q$  is the *start state*, and
- 5.  $F \subseteq Q$  is the set of accept states.<sup>2</sup>

## DFA State Diagram to Formal Definition



Write out the formal definition of the above DFA

A *finite automaton* is a 5-tuple  $(Q, \Sigma, \delta, q_0, F)$ , where

({90,91,92,933, {a,by, 8, 90, 292})

- 1. Q is a finite set called the *states*,
- **2.**  $\Sigma$  is a finite set called the *alphabet*,
- **3.**  $\delta(Q \times \Sigma) \rightarrow Q$  is the *transition function*, <sup>1</sup>
- **4.**  $q_0 \in Q$  is the **start state**, and
- **5.**  $F \subseteq Q$  is the set of accept states.

Where 
$$\delta((q_{i}, x)) = \begin{cases} q_{i+1} & \text{where } i < 3 \\ q_{i} & \text{where } i = 3 \end{cases}$$

## **DFA** Computation



- What are some example strings accepted by this DFA?
- What is the language recognized by this DFA?  $\begin{cases} aa, ab, ba, bb \end{cases}$
- What is a regular expression that describes this language?

$$\frac{((avb)(avb))^{x}}{((avb)(avb))^{+}}$$

$$(avb)^{2}$$

# **DFA** Design

Consider the alphabet  $\Sigma = \{a, b\}$ , design DFA that recognizes:

{w | w does not contain the substring **ab**}

Complement: {w | w contains substring orb?



 $\{w \mid w \text{ begins with } \mathbf{a} \text{ and ends with } \mathbf{b}\}$ 



#### **NFA** Definition

#### DEFINITION 1.37

A nondeterministic finite automaton is a 5-tuple  $(Q, \Sigma, \delta, q_0, F)$ , where

- **1.** Q is a finite set of states,
- **2.**  $\Sigma$  is a finite alphabet,
- 3.  $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$  is the transition function,
- **4.**  $q_0 \in Q$  is the start state, and
- **5.**  $F \subseteq Q$  is the set of accept states.

## **NFA** Transition Function



Consider alphabet  $\Sigma = \{0, 1\}$ 

Complete the transition function of the NFA



## **NFA** Transition Function



Consider alphabet  $\Sigma = \{0, 1\}$ 

Complete the transition function of the NFA

|                  | 0           | 1             | arepsilon    |
|------------------|-------------|---------------|--------------|
| $\overline{q_1}$ | $\{q_1\}$   | $\{q_1,q_2\}$ | Ø            |
| $q_2$            | $\{q_3\}$   | $\emptyset$   | $\{q_3\}$    |
| $q_3$            | Ø           | $\{q_4\}$     | Ø            |
| $q_4$            | $  \{q_4\}$ | $\{q_4\}$     | $\emptyset,$ |

Sipser Example 1.38, Pg 54

#### NFA vs. DFA

- Nondeterministic: when an NFA is in a given state and reads the next input symbol, there is a set of possible next states, i.e. several choices (or no choice) may exist for the next state
- E-transitions: spontaneously moving without reading any input symbols
- Acceptance condition: there is a computation of the machine on the string that processes the whole string and ends in an accept state



FIGURE 1.28
Deterministic and nondeterministic computations with an accepting branch

## NFA Computation

Computation of the NFA on string 010110





## Questions?

Good luck for HW 2!