Regular Expressions

CSE 105 Week 1 Discussion

Deadlines and Logistics

- Make sure you have access to the <u>class website</u>, canvas, piazza and gradescope
- Make sure you can see all our OH in the <u>class calendar</u>
- Make sure you have access to <u>PrairieLearn</u> and <u>PrairieTest</u>.
- Read the grading scheme on the class website !
- Schedule your tests asap on <u>PrairieTest</u> !
- HW1 due next week on 8th (Tuesday) at 5 PM
- Link for the slides :

https://docs.google.com/presentation/d/1rYhfMTnWjxi5GmIOC0Oj13gXquWEN JHr5Azs4E_DpOA/edit?usp=sharing

What can you expect from the discussion section

- Recap* of key concepts from lectures
- Lots of informal interaction
- Practice problems from notes, review quizzes, Sipser and HW
- Ask us any questions and get your doubts answered !

PS - All screenshots taken either from Sipser or class notes unless specified otherwise

*See next slide for the extent of the recap

What NOT to expect from the discussion section

- A self contained "lecture" covering CSE 105. The discussion does NOT replace M/W/F lectures
- Answers to "Graded for correctness" HW questions
- Self contained notes to study from

Are the discussion sections podcasted/online/recorded?

Ask me why

General Information

Do not memorize anything for the sake of completion of HWs, exams etc without first understanding underlying concepts !

What I can memorize

Motivation

- 1. What are the capabilities and limitations of computers ?
- 2. Can we answer how "difficult" (or if even possible) a certain computation task is ?
- 3. Can we mathematically model computational problems?

Important notation

Alphabet A non-empty finite set, usually denoted as Σ

Symbol An element of the alphabet

String over Σ A finite list of symbols from Σ

Language over Σ A set of strings over Σ

 Σ^* Set of all possible strings formed from symbols in Σ

Key takeaways

- A language is a **SET** of strings
- Any time you see a language contain anything BUT strings, alarm bells should go off.
- You can have an empty language denoted by Ø. This is a language with NO strings

Is this statement correct, given Language L = {wlw is a string over {0} such that |w| = 1}

L = 0 ?

Key takeaways

- A language is a **SET** of strings
- Any time you see a language contain anything BUT strings, alarm bells should go off.
- You can have an empty language denoted by Ø. This is a language with NO strings

Is this statement correct, given Language L = {wlw is a string over {0} such that |w| = 1}

L = 0 ?

No : A language cant be just a string, it can has to be a set of (0 or more) strings! L = $\{0\}$ is the correct notation

Review Quiz Question

Consider the language $\{w \mid w \text{ is a string over } \{0,1\} \text{ and } |w| \text{ is an integer multiple of } 3\}$. Which of the following are elements of this language? (Select all and only that apply)

000
0
The empty set
\Box (1,0,1)
□ {000}
The empty string
Select all possible options that apply.

What option(s) can you eliminate right away by virtue of the definition of strings and languages ?

Review Quiz Question

Consider the language $\{w \mid w \text{ is a string over } \{0,1\} \text{ and } |w| \text{ is an integer multiple of } 3\}$. Which of the following are elements of this language? (Select all and only that apply)

Can eliminate all non string options ! (since only strings can be elements of a language

What option(s) can you eliminate right away by virtue of the definition of strings and languages ?

Regular Expressions

Remember that at the end of the day, Languages are sets. How can we define a set?

- 1. List out all the elements
- 2. Use set builder notation and describe membership condition

Or

3. Use recursive definitions (Regular Expressions !)

The language described by a regular expression R is L(R)

Recap

Let A and B be languages. We define the regular operations *union*, *concatenation*, and *star* as follows:

- Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}.$
- Concatenation: $A \circ B = \{xy | x \in A \text{ and } y \in B\}.$
- Star: $A^* = \{x_1 x_2 \dots x_k | k \ge 0 \text{ and each } x_i \in A\}.$

Pop quiz : If $\Sigma = \{0,1\}$ and language A = $\{0, 01, 1\}$ and B = $\{\epsilon, 1\}$ What is

- AUB
- A0B
- B*
- Is (A*)* = A* ?

Recap

Let A and B be languages. We define the regular operations *union*, *concatenation*, and *star* as follows:

- Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}.$
- Concatenation: $A \circ B = \{xy | x \in A \text{ and } y \in B\}.$
- Star: $A^* = \{x_1 x_2 \dots x_k | k \ge 0 \text{ and each } x_i \in A\}.$

Pop quiz : If $\Sigma = \{0,1\}$ and language A = $\{0, 01, 1\}$ and B = $\{\epsilon, 1\}$ What is

- A U B : {ε, 0, 1, 01}
- A · B : {0, 01, 1, 011, 11}
- B^* : {1, 11, 111} or { $1_0...1_k$ k is a non negative integer}
- Is (A*)* = A* ? : Yes ! Both expressions produce the set of all strings that can be formed by concatenating strings in A with one another as many times as we want

R is a regular expression over the alphabet Σ

- 1. R = a, where $a \in \Sigma$
- 2. $R = \varepsilon$
- 3. $R = \emptyset$

4. $R = (R_1 \cup R_2)$, where R_1, R_2 are themselves regular expressions

5. $R = (R_1 \circ R_2)$, where R_1, R_2 are themselves regular expressions

6. (R_1^*) , where R_1 is a regular expression.

Context is super important !

For the following examples assume the alphabet is $\Sigma = \{0, 1\}$: The language described by the regular expression 0 is $L(0) = \{0\}$ The language described by the regular expression 1 is $L(1) = \{1\}$ The language described by the regular expression ε is $L(\varepsilon) = \{\varepsilon\}$ The language described by the regular expression \emptyset is $L(\emptyset) = \emptyset$

The language described by the regular expression $\Sigma_1\Sigma_1\Sigma_1$ is $L((\Sigma_1\Sigma_1\Sigma_1)^*) =$

Do both the Σ_1 refer to the same thing ?

Context is super important ! Refers to the alphabet set Σ_1 containing symbols 1 and 0! For the following examples assume the alphabet is $\Sigma_{i} = \{0, 1\}$: The language described by the regular expression 0 is $L(0) = \{0\}$ The language described by the regular expression 1 is $L(1) = \{1\}$ The language described by the regular expression ε is $L(\varepsilon) = \{\varepsilon\}$ The language described by the regular expression \emptyset is $L(\emptyset) = \emptyset$ The language described by the regular expression $(\Sigma_1 \Sigma_1 \Sigma_1)^*$ is $L((\Sigma_1 \Sigma_1 \Sigma_1)^*) =$ Refers to one occurrence Do both the Σ_1 refer to the same thing ? : of any symbol (0 or 1 in NO! this case) from Σ_1 .

Other conventions

Assuming Σ is the alphabet, we use the following conventions

Σ	regular expression describing language consisting of all strings of length 1 over Σ
* then \circ then \cup	precedence order, unless parentheses are used to change it
R_1R_2	shorthand for $R_1 \circ R_2$ (concatenation symbol is implicit)
R^+	shorthand for $R^* \circ R$
R^k	shorthand for R concatenated with itself k times, where k is a (specific) natural number

Remember

A regular expression should describe a SET of strings over an alphabet since it is descriptive of a Language, which is a SET of strings over an alphabet.

All "operations" and "conventions" you see in a regular expression boil down to some fundamental operation(s) on set(s).

What operations and what sets ?

Remember

A regular expression should describe a SET of strings over an alphabet since it is descriptive of a Language, which is a SET of strings over an alphabet.

All "operations" and "conventions" you see in a regular expression boil down to some fundamental operation(s) on set(s).

What operations and what sets?

U, * and \circ

As a basis step :

- Element ∈ alphabet or
- **e**
- Ø

Inductively:

On any regular expression(s)

When you see... The language described by the regular expression $1^* \circ 1$ is $L(1^* \circ 1) =$

You need to think : sets and operations !

Solve :

When you see... The language described by the regular expression $1^* \circ 1$ is $L(1^* \circ 1) =$

You need to think : sets and operations !

Solve :

 $L(1^{*} \circ 1) = L(1^{*}) \circ L(1) = L(1)^{*} \circ L(1) = \{1\}^{*} \circ \{1\} = \{1^{k} | k \ge 0\} \circ \{1\} = \{1^{k} | k \ge 0\} \circ \{1\} = \{1^{k} | k \ge 0\} \text{ (sufficient to leave it at this step)} = \{1^{k} | k \ge 1\}$

From Regex to Language

The language over $\Sigma_1 = \{0,1\}$ described by the regular expression Σ_1^*1 is $L(\Sigma_1^*1) = \mathsf{BLANK}$

Describe this set in (a) Simple english and (b) Set builder notation

(a) Set of all strings over Σ_1 ending in a 1 (b) {x1| x $\in \Sigma_1^*$ } Describe the language generated by these Regex(over $\Sigma = \{0,1\}$) : Basics

- 1. (OU1)
- 2. (0U1)*
- 3. Σ^{*}
- 4. (0)U(1)
- 5. (01) U (1)
- 6. (01)* U (1)
- 7. (01 U 1)*

No, Seriously, try them yourself first !

Describe the language generated by these Regex(over $\Sigma =$ {0,1}) : Basics

(0U1) : {0,1} 1.

(2)

4.

5.

2.

 $(0)U(1): \{0, 1\}$

(01) U (1): {01, 1}

6. $(01)^* \cup (1): \{(01)^k | k \ge 0\} \cup \{1\}$

7. $(01 \cup 1)^* : \{x \mid x \in \{01,1\}^*\}$

- 3. Σ^* : Set of all strings that can be created from elements in Σ (Notice similarity to
- $(0U1)^* : \{x \mid x \in \Sigma^*\}$

Describe the language generated by these Regex(over Σ = {0,1}) : Level up

- 1.
- (01)(01)*(01)

 $(\varepsilon \cup \Sigma)(\varepsilon \cup \Sigma)(\varepsilon \cup \Sigma)$

7. (1Σ*1) U (0Σ*0) U (ε) U (1) U (0)

6. $\Sigma^*1\Sigma^*0\Sigma^* \cup \Sigma^*0\Sigma^*1\Sigma^*$

4. $\epsilon^* \Sigma \Sigma \epsilon^*$

5.

- 2.
- $(01)^+(01)$ 3. 1 U 11 U 111 U 1111 U 11111*

No, Seriously, try them yourself first !

Describe the language generated by these Regex(over $\Sigma = \{0,1\}$) : Level up

- 1. (01)(01)*(01) : Set of strings containing repeating units of (01) with at least 2 repeats
- (01)⁺(01) : Set of strings containing repeating units of (01) with at least 2 repeats (notice similarity to (1))
- 3. 1 U 11 U 111 U 1111 U 11111* : Same language as 11^* or 1^+
- 4. $\epsilon^* \Sigma \Sigma \epsilon^*$: All strings of length 3
- 5. $(\varepsilon \cup \Sigma)(\varepsilon \cup \Sigma)(\varepsilon \cup \Sigma)$: All strings of length at most 3
- 6. $\Sigma^{*1}\Sigma^{*0}\Sigma^{*} \cup \Sigma^{*0}\Sigma^{*1}\Sigma^{*}$: All strings containing at least one 1 and one 0
- 7. $(1\Sigma^{*1}) \cup (0\Sigma^{*0}) \cup (\epsilon) \cup (1) \cup (0)$: All strings starting and ending with the same symbol

Questions?

Good luck for HW 1!